The caterpillar Pseudoplusia includens (Walker, 1857) (Lepidoptera, Noctuidae), known as soybean looper, is a pest that has recently assumed greater importance in soybean in Brazil. Isolates of nucleopolyhedroviruses (NPVs) of this pest have been identified from cotton in Guatemala and soybean farms in Brazil, providing an interesting perspective of potential use of viral insecticide against the insect in lieu to chemical insecticides. With the objective to contribute to the characterization studies of this virus, morphological and molecular analyses and biological activity were carried out with seven P. includens viral isolates (I-A to I-G). Electron microscopy of viral samples, purified from macerated infected larvae, showed particles with typical morphology of the Baculoviridae family, genus Alphabaculovirus (Nucleopolyhedrovirus - NPV) presenting virions with only a single nucleocapsid per envelope (SNPV) occluded in a protein matrix, forming occlusion bodies (OB). This virus was then classified as P. includens single nucleopolyhedrovirus (PsinSNPV). OB particles analyzed in SDS-polyacrylamide gel showed an intense band corresponding in size to NPV polyhedrin protein. DNA restriction profiles of the PsinSNPV isolates showed differences in the fragment size and number suggesting the existence of genotypic variants, except between I-E and I-F profiles that were similar. Among the isolates tested for infectivity against P. includens, I-A, I-E and I-F were the most virulent. Survival times (ST(50)) varied according to viral concentration, with significant differences among isolates for the three higher concentrations.
BackgroundPseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated.ResultsThe complete genome of PsinSNPV was sequenced (Roche 454 GS FLX – Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins.ConclusionsPsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1323-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.