Miniature postsynaptic currents (minis) in cultured retinal amacrine cells, as in other central neurons, show large variations in amplitude. To understand the origin of this variability, we have exploited a novel form of synapse in which pre- and postsynaptic receptors sample the same quantum of transmitter. At these synapses, mini amplitudes measured simultaneously in the 2 cells show a strong correlation, accounting for, on average, more than half of the variance in amplitude. Two pieces of evidence support the conclusion that variations in the amount of transmitter in different quanta underlie this correlation. First, diazepam, which enhances GABA binding, increases mini amplitude, implying therefore that transmitter concentration is not saturating. Second, we show that amplitude distributions from all cells, even those with a small number of release sites, have the same shape, implying that most or all variance is intrinsic to each release site.
The properties of synapses between retinal neurons make an essential contribution to early visual processing. Light produces a graded hyperpolarization in photoreceptors, up to 25 mV in amplitude, and it is conventionally assumed that all of this response range is available for coding visual information. We report here, however, that the rod output synapse rectifies strongly, so that only potential changes within 5 mV of the rod dark potential are transmitted effectively to postsynaptic horizontal cells. This finding is consistent with the voltage-dependence of the calcium current presumed to control neurotransmitter release from rods. It suggests functional roles for the strong electrical coupling of adjacent rods and the weak electrical coupling of adjacent rods and cones. The existence of photoreceptor coupling resolves the apparent paradox that rods have a 25 mV response range, while signals greater than 5 mV in amplitude are clipped during synaptic transmission. We predict that the strengths of rod-rod and rod-cone coupling are quantitatively linked to the relationship between the rod response range and the synapse operating range.
We have examined synaptic transmission between isolated pairs of chick GABAergic amacrine cells, maintained in sparse culture and identified by their binding of an amacrine cell-selective antibody. Using the perforated-patch method to whole-cell clamp both cells of a pair, postsynaptic currents were examined for step depolarizations of the "presynaptic" cell. Synaptic transmission, frequently reciprocal, was calcium dependent and reversibly blocked by bicuculline. Post-synaptic currents, excluding those due to ohmic electrical coupling, were elicited only for presynaptic voltage steps positive to about -40 mV and were always very noisy, suggesting that they were summed from relatively small numbers of quanta. Postsynaptic currents continued well after the termination of the 100 msec presynaptic voltage step when the step was to -10 mV, or positive to this value. This result is interpreted to imply that presynaptic calcium concentration remains elevated after the membrane is returned to its holding potential. When presynaptic voltages were kept low or else presynaptic voltage was uncontrolled, spontaneous quantal events mediated by GABAA receptors could often be seen. Quanta rose quickly (less than 4 msec) and decayed with a mean time constant of 19.3 msec. The amplitude distributions of quantal currents were positively skewed, sometimes showing rare quanta of exceptionally large amplitude. Peak conductance per quantum was about 300 pS, corresponding to the simultaneous opening of only 17 GABAA channels and corresponding to a net flux of only 32 x 10(3) Cl- ions per millivolt of driving force. Estimates of the maximum sustained release rate at individual release sites suggest an upper bound of between 19 and 42 quanta per second.
The amplitude distribution of miniature postsynaptic currents (minis) in many central neurons has a large variance and positive skew, but the sources of this variance and skew are unresolved. Recently it has been proposed that spontaneous Ca2+ influx into a presynaptic bouton with multiple release sites could cause spontaneous multiquantal minis by synchronizing release at all sites in the bouton, accounting for both the large variance and skew of the mini distribution. We tested this hypothesis by evoking minis with internally perfused, buffered Ca2+ and the secretagogue alpha-latrotoxin, both in the absence of external Ca2+. With these manipulations, the synchronized release model predicts that the mini distribution should collapse to a Gaussian distribution with a reduced coefficient of variation. Contrary to this expectation, we find that mini amplitude distributions under these conditions retain a large variance and positive skew and are indistinguishable from amplitude distributions of depolarization-evoked minis, strongly suggesting that minis are uniquantal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.