NHCs go nano: Ruthenium nanoparticles were formed from (cyclooctadiene)(cyclooctatriene)ruthenium(0) and stabilized by N‐heterocyclic carbenes (NHCs). Solid‐state NMR spectroscopy revealed both the coordination of the NHC ligands on the surface of the particles and their surface reactivity.
Coordinatively unsaturated Pt(II) complex [Pt(I(t)Bu')(I(t)Bu)](+) stabilized by N-heterocyclic carbene (NHC) ligands dehydrogenates N,N-dimethylamineborane through a mechanism that involves hydride abstraction, assisted by an amine, to yield a platinum-hydride complex [PtH(I(t)Bu')(I(t)Bu)] with concomitant formation of the boronium cation [(NHMe2)2BH2](+). This latter species is very likely in equilibrium with the THF stabilized borenium cation [(NHMe2)(THF)BH2](+), bearing an acidic NH group that is able to protonate the platinum hydride [PtH(I(t)Bu')(I(t)Bu)] releasing H2, the amino borane H2B-NMe2 and regenerating the catalytic [Pt](+) species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.