In this work 12 different ionic liquids (ILs) have been used added as co‐binders in the preparation of modified carbon paste electrodes (IL–CPEs) used for the voltammetric analysis of dopamine in Britton‐Robinson buffer. The ionic liquids studied were selected based on three main criteria: (1) increasing chain length of alkyl substituents (studying 1‐ethylimidazolium and ethyl, propyl, butyl, hexyl and decylmethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids); (2) nature of the counter ion (dicyanamide, bis(trifluoromethylsulfonyl)imide and hexafluorophosphate) in 1‐butyl‐3‐methylimidazolium ionic liquids; and (3) cation ring structures (1‐butyl‐3‐methylimidazolium, 1‐butyl‐1‐methylpiperidinium, 1‐butyl‐1‐methylpyrrolidinium and 1‐butyl‐3‐methylpyridinium) in bis(trifluoromethylsulfonyl)imide or hexafluorophosphate (1‐butyl‐3‐methylimidazolium or 1‐butyl‐3‐methylpyridinium as cations) ionic liquids. The use of IL as co‐binders in IL–CPE results in a general enhancement of both the sensitivity and the reversibility of dopamine oxidation. In square wave voltammetry experiments, the peak current increased up to a 400 % when 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used as co‐binder, as compared to the response found with the unmodified CPE. Experimental data provide evidence that electrostatic and steric effects are the most important ones vis‐à‐vis these electrocatalytic effects on the anodic oxidation of dopamine on IL–CPE. The relative hydrophilicity of dicyanamide anions reduced the electrocatalytic effects of the corresponding ionic liquids, while the use of 1‐ethyl‐3‐methylimidazolium hexafluorophosphate or 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (two relatively small and highly hydrophobic ionic liquids) as co‐binders in IL–CPE resulted in the highest electrocatalytic activity among all of the IL–CPE studied.
Nanostructured gold surfaces were prepared by potentiostatic, potentiodynamic or galvanostatic Au electrodeposition on glassy carbon electrodes. The nanostructured gold electrodes (nsAu/GC) were used for the determination of dopamine (DA) in aqueous media. A directly proportional relationship was found between the peak current for DA (obtained by square wave voltammetry, SWV) and its concentration for all cases. However, the best performance for DA determination was attained with potentiodynamically electrodeposited surfaces. The SWV peak current was linearly dependent on DA concentration up to 10 μM, with a detection limit (3σ) of 0.57 μM, and a correlation coefficient (r) of 0.9966. A study on the effect of common interfering species such as ascorbic acid (AA) and uric acid (UA) on DA determination was also carried out. The use of a nanostructured surface gives rise to peaks for AA and UA that appear at 0.15–0.20 V above the peak potential for DA. The detection limit obtained for dopamine is below 1 μM in the presence of 0.1 mM AA and 0.1 mM UA. Thus, nanostructuring of glassy carbon surfaces with gold conveniently and easily improves the detection of DA in the presence of their principal interfering species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.