Social media has become an important tool to share information about crisis events such as natural disasters and mass attacks. Detecting actionable posts that contain useful information requires rapid analysis of huge volume of data in real-time. This poses a complex problem due to the large amount of posts that do not contain any actionable information. Furthermore, the classification of information in real-time systems requires training on outof-domain data, as we do not have any data from a new emerging crisis. Prior work focuses on models pre-trained on similar event types. However, those models capture unnecessary event-specific biases, like the location of the event, which affect the generalizability and performance of the classifiers on new unseen data from an emerging new event. In our work, we train an adversarial neural model to remove latent event-specific biases and improve the performance on tweet importance classification.
In this work, we present a dynamic response spoken dialogue system (DRSDS). It is capable of understanding the verbal and nonverbal language of users and making instant, situation-aware response. Incorporating with two external systems, MultiSense and email summarization, we built an email reading agent on mobile device to show the functionality of DRSDS.
Social media has become an important tool to share information about crisis events such as natural disasters and mass attacks. Detecting actionable posts that contain useful information requires rapid analysis of huge volume of data in real-time. This poses a complex problem due to the large amount of posts that do not contain any actionable information. Furthermore, the classification of information in real-time systems requires training on outof-domain data, as we do not have any data from a new emerging crisis. Prior work focuses on models pre-trained on similar event types. However, those models capture unnecessary event-specific biases, like the location of the event, which affect the generalizability and performance of the classifiers on new unseen data from an emerging new event. In our work, we train an adversarial neural model to remove latent event-specific biases and improve the performance on tweet importance classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.