As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.de novo genome sequence | genome expansion | Solanaceae evolution
Summary • It is still an open question as to whether genome size (GS) variation is shaped by natural selection. One approach to address this question is a population-level survey that assesses both the variation in GS and the relationship of GS to ecological variants. • We assessed GS in Zea mays, a species that includes the cultivated crop, maize, and its closest wild relatives, the teosintes. We measured GS in five plants of each of 22 maize landraces and 21 teosinte populations from Mexico sampled from parallel altitudinal gradients. • GS was significantly smaller in landraces than in teosintes, but the largest component of GS variation was among landraces and among populations. In maize, GS correlated negatively with altitude; more generally, the best GS predictors were linked to geography. By contrast, GS variation in teosintes was best explained by temperature and precipitation. • Overall, our results further document the size flexibility of the Zea genome, but also point to a drastic shift in patterns of GS variation since domestication. We argue that such patterns may reflect the indirect action of selection on GS, through a multiplicity of phenotypes and life-history traits.
The central abundance hypothesis predicts that local adaptation is a function of the distance to the centre of a species' geographic range. To test this hypothesis, we gathered genomic diversity data from 49 populations, 646 individuals and 33,464 SNPs of two wild relatives of maize, the teosintes Zea mays ssp. parviglumis and Zea. mays. ssp. mexicana. We examined the association between the distance to their climatic and geographic centroids and the enrichment of SNPs bearing signals of adaptation. We identified candidate adaptive SNPs in each population by combining neutrality tests and cline analyses. By applying linear regression models, we found that the number of candidate SNPs is positively associated with niche suitability, while genetic diversity is reduced at the limits of the geographic distribution. Our results suggest that overall, populations located at the limit of the species' niches are adapting locally. We argue that local adaptation to this limit could initiate ecological speciation processes and facilitate adaptation to global change.
Patterns of genomic divergence between hybridizing taxa can be heterogeneous along the genome. Both differential introgression and local adaptation may contribute to this pattern. Here, we analysed two teosinte subspecies, Zea mays ssp. parviglumis and ssp. mexicana, to test whether their divergence has occurred in the face of gene flow and to infer which environmental variables have been important drivers of their ecological differentiation. We generated 9,780 DArTseqTM SNPs for 47 populations, and used an additional data set containing 33,454 MaizeSNP50 SNPs for 49 populations. With these data, we inferred features of demographic history and performed genome wide scans to determine the number of outlier SNPs associated with climate and soil variables. The two data sets indicate that divergence has occurred or been maintained despite continuous gene flow and/or secondary contact. Most of the significant SNP associations were to temperature and to phosphorus concentration in the soil. A large proportion of these candidate SNPs were located in regions of high differentiation that had been identified previously as putative inversions. We therefore propose that genomic differentiation in teosintes has occurred by a process of adaptive divergence, with putative inversions contributing to reduced gene flow between locally adapted populations. K E Y W O R D Schromosomal inversions, demographic inferences, ecological speciation, genomic differentiation, multifarious selection | 2815 AGUIRRE-LIGUORI Et AL.
Cultivated squash (Cucurbita argyrosperma ssp. argyrosperma and C. moschata) are important in the Mexican traditional agroecosystem. They are typically cultivated within maize fields where adjacent populations of a wild, close relative, C. argyrosperma ssp. sororia, occur. Consequently, there are ample opportunities for gene flow between domesticated and free-living Cucurbita populations. We used allozymes to examine genetic variation and gene flow among these three Cucurbita taxa in the state of Jalisco in Western Mexico. Twelve polymorphic allozyme loci were used to calculate genetic diversity for 16 populations of Cucurbita. We found high levels of genetic variation: polymorphism of 0.96, mean allelic diversity of 2.08, average expected heterozygosity 0.407, and little differentiation among conspecific populations (D = 0.081; F(ST) = 0.087; N(e)m = 5.22). These findings indicate that Cucurbita possess a high pollen dispersal potential, a somewhat surprising result considering they have specialist pollinators. Unweighted pair group method with arithmetic means (UPGMA) analysis of allozymes suggests the existence of at least two distinct groups of populations, one consisting of both subspecies of C. argyrosperma and another consisting of C. moschata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.