We give a new characterization for the convergence in distribution to a standard normal law of a sequence of multiple stochastic integrals of a fixed order with variance one, in terms of the Malliavin derivatives of the sequence. We also give a new proof of the main theorem in [7] using techniques of Malliavin calculus. Finally, we extend our result to the multidimensional case and prove a weak convergence result for a sequence of square integrable random variables.
Let B H and e B H be two independent, d-dimensional fractional Brownian motions with Hurst parameter H ∈ (0, 1) . Assume d ≥ 2. We prove that the intersection local time of B H and e B H I(B H , e B H ) = Z T 0 Z T 0 δ(B H t − e B H s )dsdt exists in L 2 if and only if Hd < 2.
The solution of the continuous time filtering problem can be represented as a ratio of two expectations of certain functionals of the signal process that are parametrized by the observation path. We introduce a class of discretization schemes of these functionals of arbitrary order. The result generalizes the classical work of Picard, who introduced first order discretizations to the filtering functionals. For a given time interval partition, we construct discretization schemes with convergence rates that are proportional with the m-power of the mesh of the partition for arbitrary m ∈ N. The result paves the way for constructing high order numerical approximation for the solution of the filtering problem.
In this paper we prove the existence of strong solutions to a SDE with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters H < 1 2 . Here the generalized drift is given as the local time of the unknown solution process, which can be considered an extension of the concept of a skew Brownian motion to the case of fractional Brownian motion. Our approach for the construction of strong solutions is new and relies on techniques from Malliavin calculus combined with a "local time variational calculus" argument.
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Lévy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Lévy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose Lévy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.