We present a computer simulation picture of the dynamical behavior, at room temperature, of water in the region close to a protein surface. We analyzed the probability distribution of water molecules diffusing near the surface, and we found that it deviates from a Gaussian, which is predicted for Brownian particles. Consistently, the mean square displacements of water oxygens show a sublinear trend with time. Moreover, the relaxation of hydration layers around the whole protein is found to follow a stretched exponential decay, typical of complex systems, which could as well be ascribed to the non-Gaussian shape of the propagator. In agreement with such findings, the analysis of water translational and reorientational diffusion showed that not only are the solvent molecule motions hindered in the region close to the protein surface, but also the very nature of the particle diffusive processes, both translational and rotational, is affected. The deviations from the bulk water properties, which put into evidence a deep influence exerted by the protein on the solvent molecule motion, are discussed in connection with the presence of spatial ͑protein surface roughness͒ and temporal ͑distribution of water residence times͒ disorder inherent in the system.
Measurement of the low temperature neutron excess of scattering of H2O-hydrated plastocyanin relative to D2O-hydrated protein allowed us to reveal the presence of an inelastic peak at about 3.5 meV. This excess of vibrational modes, elsewhere termed "boson peak," is due to the dynamical behavior of the water molecules belonging to the H2O-hydration shell surrounding the protein. The relevance of the boson peak to the dynamical coupling between the solvent and the protein, and hence to the protein functionality is addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.