In this paper, a review of the recent scientific literature contributions on innovative strategies for last mile logistics, focusing on externalities cost reduction, is presented. Transport is causing problems in urban areas, in particular in freight transport: modern cities need solutions to reduce externalities costs such as congestion, pollution and others, which have increased in the last few years, especially due to the growth of goods delivery. Online sales and globalization lead to new trends in freight transport, and moreover, a larger quantity of goods is expected to be delivered in the next future. In this context, most of the delivered goods end up in the city centers. Last mile logistics is the least efficient stage of the supply chain and comprises up to 28% of the total delivery cost. Therefore, the improvement of last mile logistics and a significant externalities reduction are very important challenges for researchers. New technologies and transport means, innovative techniques and organizational strategies allow handling in a more effective way the last mile delivery in urban areas. Based on the Systematic Literature Review (SLR) method, recent papers that significantly contributed, with original proposals, to the reduction of externalities in urban logistics are identified and analyzed in this work. Furthermore, a classification of the papers dealing with the externality reduction problem is presented. It is consistent with a general formulation proposed to evaluate external costs in urban area. The innovative contributions are classified into five main categories: innovative vehicles, proximity stations or points, collaborative and cooperative urban logistics, optimization of transport management and routing, innovations in public policies and infrastructures. The new paradigm of smart logistics is based on the combination of these concepts and on the proposed innovations.
During the last years, due to the strict regulations on waste landfilling, anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is increasingly considered a sustainable alternative for waste stabilization and energy recovery. AD can reduce the volume of OFMSW going to landfill and produce, at the same time, biogas and compost, all at a profit. The uncertainty about the collected quantity of organic fraction, however, may undermine the economic-financial sustainability of such plants. While the flexibility characterizing some AD technologies may prove very valuable in uncertain contexts since it allows adapting plant capacity to changing environments, the investment required for building flexible systems is generally higher than the investment for dedicated equipment. Hence, an adequate justification of investments in these flexible systems is needed. This paper presents the results of a study aimed at investigating how different technologies may perform from technical, economic and financial standpoints, in presence of an uncertain organic fraction quantity to be treated. Focusing on two AD treatment plant configurations characterized by a technological process with different degree of flexibility, a real options-based model is developed and then applied to the case of the urban waste management system of the Metropolitan Area of Bari (Italy). Results show the importance of pricing the flexibility of treatment plants, which becomes a critical factor in presence of an uncertain organic fraction. Hence, it has to be taken into consideration in the design phase of these plants.
Abstract:Purpose: The aim of this study is to identify the best Material Handling Equipment (MHE) to minimize the carbon footprint of inbound logistic activities, based on the type of the warehouse (layout, facilities and order-picking strategy) as well as the weight of the loads to be handled.Design/methodology/approach: A model to select the best environmental MHE for inbound logistic activities has been developed. Environmental performance of the MHE has been evaluated in terms of carbon Footprint (CF). The model is tested with a tool adopting a VBA macro as well as a simulation software allowing the evaluation of energy and time required by the forklift in each phase of the material handling cycle: picking, sorting and storing of the items.Findings: Nowadays, it is not possible to identify 'a priori' a particular engine equipped forklift performing better than others under an environmental perspective. Consistently, the application of the developed model allows to identify the best MHE tailored to each case analyzed. Originality/value:This work gives a contribution to the disagreement between environmental performances of forklifts equipped with different engines. The developed model can be considered a valid support for decision makers to identify the best MHE minimizing the carbon footprint of inbound logistic activities.-1035-Journal of Industrial Engineering and Management -http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.