The notions of softwarization and virtualization of the radio access network (RAN) of next-generation (5G) wireless systems are ushering in a vision where applications and services are physically decoupled from devices and network infrastructure. This crucial aspect will ultimately enable the dynamic deployment of heterogeneous services by different network operators over the same physical infrastructure. RAN slicing is a form of 5G virtualization that allows network infrastructure owners to dynamically "slice" and "serve" their network resources (i.e., spectrum, power, antennas, among others) to different mobile virtual network operators (MVNOs), according to their current needs. Once the slicing policy (i.e., the percentage of resources assigned to each MVNO) has been computed, a major challenge is how to allocate spectrum resources to MVNOs in such a way that (i) the slicing policy defined by the network owner is enforced; and (ii) the interference among different MVNOs is minimized. In this article, we mathematically formalize the RAN slicing enforcement problem (RSEP) and demonstrate its NP-hardness. For this reason, we design three approximation algorithms that render the solution scalable as the RSEP increases in size. We extensively evaluate their performance through simulations and experiments on a testbed made up of 8 software-defined radio peripherals. Experimental results reveal that not only do our algorithms enforce the slicing policies, but can also double the total network throughput when intra-MVNO power control policies are used in conjunction.
Undetectable wireless transmissions are fundamental to avoid eavesdroppers or censorship by authoritarian governments. To address this issue, wireless steganography "hides" covert information inside primary information by slightly modifying the transmitted waveform such that primary information will still be decodable, while covert information will be seen as noise by agnostic receivers. Since the addition of covert information inevitably decreases the SNR of the primary transmission, a key challenge in wireless steganography is to mathematically analyze and optimize the impact of the covert channel on the primary channel as a function of different channel conditions. Another core issue is to make sure that the covert channel is almost undetectable by eavesdroppers. Existing approaches are protocol-specific and thus their performance cannot be assessed and optimized in general scenarios. To address this research gap, we notice that existing wireless technologies rely on phase-keying modulations (e.g., BPSK, QPSK) that in most cases do not use the channel up to its Shannon capacity. Therefore, the residual capacity can be leveraged to implement a wireless system based on a pseudo-noise asymmetric shift keying (PN-ASK) modulation, where covert symbols are mapped by shifting the amplitude of primary symbols. This way, covert information will be undetectable, since a receiver expecting phase-modulated symbols will see their shift in amplitude as an effect of channel/path loss degradation. Through rigorous mathematical analysis, we first investigate the SER of PN-ASK as a function of the channel; then, we find the optimal PN-ASK parameters that optimize primary and covert throughput under different channel condition. We evaluate the throughput performance and undetectability of PN-ASK through extensive simulations and on an experimental testbed based on USRP N210 software-defined radios. Results indicate that PN-ASK improves the throughput by more than 8x with respect to prior art. Finally, we demonstrate through experiments that PN-ASK is able to transmit covert data on top of IEEE 802.11g frames, which are correctly decoded by an off-the-shelf laptop WiFi card without any hardware modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.