Steep terrain harvesting can only be implemented by a limited set of operational alternatives; therefore, it is important to be efficient in such conditions, in order to avoid incurring high costs. Harvesting abiotically-disturbed forests (salvage harvests caused by wet snow), which is becoming common these days, can significantly impact the operational efficiency of extraction operations. This study was implemented in order to evaluate the performance of truck-mounted uphill cable yarding operations in salvage logging deployed in coniferous stands. A time study was used to estimate the productivity and yarding costs, and predictive models were developed in order to relate the time consumption and productivity to the relevant operational factors, including the degree of wood damage. The average operational conditions were characterized by an extraction distance of 101 m and a lateral yarding distance of 18 m, resulting in a productivity rate of 20.1 m3 h−1. In response to different kind of delays, the productivity rate decreased to 12.8 m3 h−1. Under the prevailing conditions, lateral yarding accounted for 32% of the gross work cycle time, and for 50% of the delay-free work cycle time of the machine. Decreasing the lateral yarding distance and increasing the payload volume to the maximum capacity of the machine would eventually lead to a yarding productivity of close to 30 m3 per SMH (scheduled machine hour). The calculation of the gross costs of uphill yarding showed that the labor costs (35.7%) were slightly higher than the fixed costs (32.9%), and twice as high compared to the variable costs (17.7%). The remote control of the carriage, mechanical slack-pulling mechanisms, and radio-controlled chokers are just some of the improvements that would have led to increments in operational efficiency.
Ring shake is a widespread phenomenon affecting a great number of species of both softwood and hardwood and is found in trees grown in temperate and tropical climates. Chestnut (Castanea sativa Mill.) represents one of the most important hardwood timbers that is very often affected by ring shake. This defect seems to be the only real limit to the spread and use of chestnut wood worldwide on a scale closer to the availability of this wood. The aim of this study was to examine the potential of tomographic measurement as a non-destructive method for predicting the possibility of the presence of ring shake in standing chestnut trees. For this reason, the experiments were carried out in a chestnut coppice stand where one hundred chestnut standards were monitored using an acoustic tomographic device, and subsequently harvested by a local company and cross-sectioned corresponding to the acoustic tests. This work proposed an applied approach to predicting and determining wood quality (sound wood vs. defective wood) from tomographic data. The model, based on a non-linear approach, showed that sonic tomography can identify ring shake in a tree trunk without affecting its biological activity, overcoming the difficulties of predicting ring shake using only visual inspection.
The characterization of poplar wood assumes a strategic position to increase the competitiveness of the entire forest wood supply chain. From this aspect, the identification of wood quality represents a primary objective for researchers and private landowners. The quality of wood can be defined via traditional visual methods based on the experience of technicians or using traditional tools, such as incremental drills and sound hammers. The traditional properties of these traits, based only on visual characteristics, can outline a classification based on the macroscopic properties of wood with the aim of defining the volume of recoverable wood. However, this approach does not provide a good indicator of the physical or mechanical properties of wood. Mechanical tests of wood require the felling of trees with the correlated preparation of the specimens. A different solution to determine wood quality is based on the application of non-destructive technology (NDT). In this context, the aim of the present study was to determine the predictive accuracy of non-destructive analysis of the MOEd in standing trees and logs of a 22-year-old poplar clone and to examine the relationship with MOEs in sawn specimens. This relationship was also studied at three different stem heights. We non-destructively measured poplar trees and green logs using TreeSonic and Resonance Log Grader and compared the results with those obtained via a destructive method using a universal testing machine. The results showed that for clone I-214 poplar trees, the dynamic elastic moduli of standing trees and logs were validly correlated with the static elastic modulus. These results suggest that it is possible to evaluate the mechanical properties of poplar wood directly from standing trees using non-destructive techniques (NDT) and that this tool can be easily used to presort material in the forest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.