The benefits from treatment with antivenom sera are indubitable. However, the mechanism for toxin neutralization has not been completely elucidated. A mixture of anti-bothropic and anti-crotalic horse antivenom has been reported to be more effective in neutralizing the effects of Bothrops jararacussu snake venom than anti-bothropic antivenom alone. This study determined which regions in the three PLA₂s from B. jararacussu snake venom are bound by antibodies in tetravalent anti-bothropic and monovalent anti-crotalic commercial horse antivenom. Mapping experiments of BthTX-I, BthTX-II and BthA-I using two small libraries of 69 peptides each revealed six major IgG-binding epitopes that were recognized by both anti-bothropic and anti-crotalic horse antivenom. Two epitopes in BthTX-I were only recognized by the anti-bothropic horse antivenom, while anti-crotalic horse antivenom recognized four unique epitopes across the three PLA₂s. Our studies suggest that the harmful activities of the PLA₂s present in the venom of B. jararacussu are neutralized by the combinatorial treatment with both antivenom sera through their complementary binding sites, which provides a wide coverage on the PLA₂s. This is the first peptide microarray of PLA₂s from B. jararacussu snake venom to survey the performance of commercial horse antiophidic antivenom. Regions recognized by the protective antivenom sera are prime candidates for improved venom cocktails or a chimeric protein encoding the multiple epitopes to immunize animals as well as for designing future synthetic vaccines.
The increasing detection of infections of Trypanosoma cruzi, the etiological agent of Chagas disease, in non-endemic regions beyond Latin America has risen to be a major public health issue. With an impact in the millions of people, current treatments rely on antiquated drugs that produce severe side effects and are considered nearly ineffective for the chronic phase. The minimal progress in the development of new drugs highlights the need for advances in basic research on crucial biochemical pathways in T. cruzi to identify new targets. Here, we report on the T. cruzi presenilin-like transmembrane aspartyl enzyme, a protease of the aspartic class in a unique phylogenetic subgroup with T. vivax separate from protozoans. Computational analyses suggests it contains 9 transmembrane domains and an active site with the characteristic PALP motif of the A22 family. Multiple linear B-cell epitopes were identified by SPOT synthesis analysis with Chagasic patient sera. Two were chosen to generate rabbit antisera, whose signal was primarily localized to the flagellar pocket, intracellular vesicles and endoplasmic reticulum in parasites by whole cell immunofluorescence. The results suggest that the parasitic presenilin-like enzyme could have a role in the secretory pathway and serve as a biomarker for infections.
Background: Health care-associated infections (HAIs) are a significant public health problem worldwide, favoring multidrug-resistant (MDR) microorganisms. The SARS-CoV-2 infection was negatively associated with the increase in antimicrobial resistance, and the ESKAPE group had the most significant impact on HAIs. The study evaluated the bactericidal effect of a high concentration of O3 gas on some reference and ESKAPE bacteria. Material and Methods: Four standard strains and four clinical or environmental MDR strains were exposed to elevated ozone doses at different concentrations and times. Bacterial inactivation (growth and cultivability) was investigated using colony counts and resazurin as metabolic indicators. Scanning electron microscopy (SEM) was performed. Results: The culture exposure to a high level of O3 inhibited the growth of all bacterial strains tested with a statistically significant reduction in colony count compared to the control group. The cell viability of S. aureus (MRSA) (99.6%) and P. aeruginosa (XDR) (29.2%) was reduced considerably, and SEM showed damage to bacteria after O3 treatment Conclusion: The impact of HAIs can be easily dampened by the widespread use of ozone in ICUs. This product usually degrades into molecular oxygen and has a low toxicity compared to other sanitization products. However, high doses of ozone were able to interfere with the growth of all strains studied, evidencing that ozone-based decontamination approaches may represent the future of hospital cleaning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.