There's something in the air … A nanocomposite consisting of well-dispersed SnO(2) and Pt nanoparticles on reduced graphene oxide (see the high-resolution TEM image) exhibited very high responses to hydrogen at concentrations between 0.5 and 3% in air, with response times of 3-7 s and recovery times of 2-6 s. The sensor was prepared by a straightforward microwave-assisted non-aqueous sol-gel approach.
Two-dimensional (2D) nanomaterials, due to their unique physical and chemical properties, are showing great potential in catalysis and electronic/optoelectronic devices. Moreover, thanks to the high surface to volume ratio, 2D materials provide a large specific surface area for the adsorption of molecules, making them efficient in chemical sensing applications. ZnO, owing to its many advantages such as high sensitivity, stability, and low cost, has been one of the most investigated materials for gas sensing. Many ZnO nanostructures have been used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases. This review summarizes most of the research articles focused on the investigation of 2D ZnO structures including nanosheets, nanowalls, nanoflakes, nanoplates, nanodisks, and hierarchically assembled nanostructures as a sensitive material for conductometric gas sensors. The synthesis of the materials and the sensing performances such as sensitivity, selectivity, response, and recovery times as well as the main influencing factors are summarized for each work. Moreover, the effect of mainly exposed crystal facets of the nanostructures on sensitivity towards different gases is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.