We show for the first time that a single ultrasonic imaging fibre is capable of simultaneously accessing 3D spatial information and mechanical properties from microscopic objects. The novel measurement system consists of two ultrafast lasers that excite and detect high-frequency ultrasound from a nano-transducer that was fabricated onto the tip of a single-mode optical fibre. A signal processing technique was also developed to extract nanometric in-depth spatial measurements from GHz frequency acoustic waves, while still allowing Brillouin spectroscopy in the frequency domain. Label-free and non-contact imaging performance was demonstrated on various polymer microstructures. This singular device is equipped with optical lateral resolution, 2.5 μm, and a depth-profiling precision of 45 nm provided by acoustics. The endoscopic potential for this device is exhibited by extrapolating the single fibre to tens of thousands of fibres in an imaging bundle. Such a device catalyses future phonon endomicroscopy technology that brings the prospect of label-free in vivo histology within reach.
Characterization of the elasticity of biological cells is growing as a new way to gain insight into cell biology. Cell mechanics are related to most aspects of cellular behavior, and applications in research and medicine are broad. Current methods are often limited since they require physical contact or lack resolution. From the methods available for the characterization of elasticity, those relying on high frequency ultrasound (phonons) are the most promising because they offer label-free, high (even super-optical) resolution and compatibility with conventional optical microscopes. In this Perspective contribution, we review the state of the art of picosecond ultrasonics for cell imaging and characterization, particularly for Brillouin scattering-based methods, offering an opinion for the challenges faced by the technology. The challenges are separated into biocompatibility, acquisition speed, resolution, and data interpretation and are discussed in detail along with new results.
In this paper, we show for the first time the polarization-sensitive super-resolution phononic reconstruction of multiple nanostructures in a liquid environment by overcoming the diffraction limit of the optical system (1 μm). By using timeresolved pump−probe spectroscopy, we measure the acoustic signature of nanospheres and nanorods at different polarizations. This enables the size, position, and orientation characterization of multiple nanoparticles in a single point spread function with the precision of 5 nm, 3 nm, and 1.4°, respectively. Unlike electron microscopy where a high vacuum environment is needed for imaging, this technique performs measurements in liquids at ambient pressure, ideal to study the insights of living specimens. This is a potential path toward super-resolution phononic imaging where the acoustic signatures of multiple nanostructures could act as an alternative to fluorescent labels. In this context, phonons also offer the opportunity to extract information about the mechanical properties of the surrounding medium as well as access to subsurface features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.