Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small-and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air-and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.
To promote the advancement of novel observation techniques that may lead to new sources of information to help better understand the hydrological cycle, the International Association of Hydrological Sciences (IAHS) established the Measurements and Observations in the XXI century (MOXXI) Working Group in July 2013. The group comprises a growing community of techenthusiastic hydrologists that design and develop their own sensing systems, adopt a multidisciplinary perspective in tackling complex observations, often use low-cost equipment intended for other applications to build innovative sensors, or perform opportunistic measurements. This paper states the objectives of the group and reviews major advances carried out by MOXXI members toward the advancement of hydrological sciences. Challenges and opportunities are outlined to provide strategic guidance for advancement of measurement, and thus discovery.
With the increasing role that unmanned aerial systems (UAS) are playing in data collection for environmental studies, two key challenges relate to harmonizing and providing standardized guidance for data collection, and also establishing protocols that are applicable across a broad range of environments and conditions. In this context, a network of scientists are cooperating within the framework of the Harmonious Project to develop and promote harmonized mapping strategies and disseminate operational guidance to ensure best practice for data collection and interpretation. The culmination of these efforts is summarized in the present manuscript. Through this synthesis study, we identify the many interdependencies of each step in the collection and processing chain, and outline approaches to formalize and ensure a successful workflow and product development. Given the number of environmental conditions, constraints, and variables that could possibly be explored from UAS platforms, it is impractical to provide protocols that can be applied universally under all scenarios. However, it is possible to collate and systematically order the fragmented knowledge on UAS collection and analysis to identify the best practices that can best ensure the streamlined and rigorous development of scientific products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.