Neurotrophins (NTs) promote survival and differentiation of central and peripheral neurons, and display several activities also in non-neuronal cells. Human lungs synthesize and release NTs, which are probably involved in the pathophysiology of pulmonary disturbances. In this article the expression and anatomic localization of nerve growth factor, brain-derived neurotrophic factor, and NT-3 and of corresponding high-affinity receptors TrkA, TrkB (full-length and truncated [TR-] isoforms), TrkC, and of the low-affinity p75 receptor, were assessed in surgical samples from adult human lung by reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. NTs and their cognate receptor mRNA and protein transcripts were detected by reverse transcriptase-polymerase chain reaction and immunoblotting, respectively, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) mRNA and corresponding protein transcripts being the most expressed. High levels of TrkB-[TR-] mRNA and of its protein transcript were also demonstrated, whereas a low expression of p75 mRNA and of corresponding protein transcript were found. Microanatomic analysis of immunohistochemical study revealed that bronchial epithelial cells were immunoreactive for different NTs, with a higher intensity of BDNF immune staining compared with other NTs, but did not express NT receptor immunoreactivity. Alveolar cells were immunoreactive for TrkA and TrkC receptor protein, but did not display immunoreactivity for NTs or other receptors investigated. Gland cells expressed NT and high-affinity NT receptor immunoreactivity, but not p75 receptor immunoreactivity. NT and low-affinity receptor immunoreactivity was observed within neurons and satellite cells of parasympathetic ganglia as well as in nerve fiber-like structures supplying the bronchopulmonary tree. An obvious immunoreactivity for NTs and NT receptor protein was also observed in intrapulmonary branches of pulmonary artery. Pulmonary lymphocytes and macrophages express nerve growth factor and high-affinity NT receptor immunoreactivity. The role of NTs in non-neuronal tissue including lung has not been clarified yet. The widespread expression of NTs and their receptors in different components of the lung suggests that these factors may contribute to regulate cell function in human lung.
We evaluated comorbidity, hospitalization, and mortality in chronic obstructive pulmonary disease (COPD), with special attention to risk factors for frequent hospitalizations (more than three during the follow-up period), and prognostic factors for death. Two hundred eighty-eight consecutive COPD patients admitted to respiratory medicine wards in four hospitals for acute exacerbation were enrolled from 1999 to 2000 in a prospective longitudinal study, and followed up until December 2007. The Charlson index without age was used to quantify comorbidity. Clinical and biochemical parameters and pulmonary function data were evaluated as potential predictive factors of mortality and hospitalization. FEV(1), RV, PaO(2), and PaCO(2) were used to develop an index of respiratory functional impairment (REFI index). Hypertension was the most common comorbidity (64.2%), followed by chronic renal failure (26.3%), diabetes mellitus (25.3%), and cardiac diseases (22.1%). Main causes of hospitalization were exacerbation of COPD (41.2%) and cardiovascular disease (34.4%). Most of the 56 deaths (19.4%) were due to cardiovascular disease (67.8%). Mortality risk depended on age, current smoking, FEV(1), PaO(2), the REFI index, the presence of cor pulmonale, ischemic heart disease, and lung cancer. Number and length of hospital admissions depended on the degree of dyspnea and REFI index. The correct management of respiratory disease and the implementation of aggressive strategies to prevent or treat comorbidities are necessary for better care of COPD patients.
The expression of neurotrophins (NTs) and related high- and low-affinity receptors was studied in surgical samples of histologically diagnosed human tumors of the lower respiratory tract. The experiment was conducted with 30 non-small cell lung cancer specimens and in eight small cell lung cancer specimens by Western blot analysis and immunohistochemistry to assess expression and distribution of NT and NT receptor proteins in tissues examined. Immunoblots of homogenates from human tumors displayed binding of anti-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and NT-3 antibodies as well as of anti-tyrosine-specific protein kinase (Trk) A, TrkB, and TrkC receptor antibodies, with similar migration characteristics than those displayed by human beta-NGF and proteins from rat brain. A specific immunoreactivity for NTs and NT receptors was demonstrated in vessel walls, stromal fibroblasts, immune cells, and sometimes within neoplastic cell bodies. Approximately 33% of bronchioloalveolar carcinomas exhibited a strong membrane NGF and TrkA immunoreactivity, whereas 46% adenocarcinomas expressed an intense TrkA immunoreactivity but a weak immunostaining for NGF within tumor cells. Moreover, squamous cell carcinomas developed an intense TrkA immunoreactivity only within stroma surrounding neoplastic cells. A faint BDNF and TrkB immunoreactivity was documented in adenocarcinomas, squamous cell carcinomas, and small cell lung cancers. NT-3 and its corresponding TrkC receptor were found in a small number of squamous cell carcinomas within large-size tumor cells. No expression of low-affinity p75 receptor protein was found in tumor cells. The detection of NTs and NT receptor proteins in tumors of the lower respiratory tract suggests that NTs may be involved in controlling growth and differentiation of human lung cancer and/or influencing tumor behavior.
Malignant pleural effusions (MPEs) could represent an excellent source to culture a wide variety of cancer cells from different donors. In this study, we set up culture conditions for cancer cells deriving from MPEs of several patients affected by the most frequent form of lung cancer, namely the subset of non small cell lung cancers (NSCLC) classified as Lung Adenocarcinomas (AdenoCa) which account for approximately 40% of lung cancer cases. AdenoCa malignant pleural effusions gave rise to in vitro cultures both in adherent and/or in spheroid conditions in almost all cases analyzed. We characterized in greater detail two samples which showed the most efficient propagation in vitro. In these samples we also compared gene profiles of spheroid vs adherent cultures and identified a set of differentially expressed genes. Finally we achieved efficient tumor engraftment in recipient NOD/SCID mice, also upon inoculation of small number of cells, thus suggesting indirectly the presence of tumor initiating cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.