Network dismantling is a relevant research area in network science, gathering attention both from a theoretical and an operational point of view. Here, we propose a general framework for dismantling that prioritizes the removal of nodes that bridge together different network communities. The strategies we detect are not unique, as they depend on the specific realization of the community detection algorithm considered. However, when applying the methodology to some real-world networks we find that the percolation threshold at which dismantling occurs is strongly robust, and it does not depend on the specific algorithm. Thus, the stochasticity inherently present in many community detection algorithms allows to identify several strategies that have comparable effectiveness but require the removal of distinct subsets of nodes. This feature is highly relevant in operational contexts in which the removal of nodes is costly and allows to identify the least expensive strategy that still holds high effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.