Little is known of how and where bacterial recognition triggers the induction of type I interferon. Whether the type of recognition receptor used in these responses is determined by the subcellular location of bacteria is not understood. Here we show that phagosomal bacteria such as group B streptococcus, but not cytosolic bacteria, potently induced interferon in conventional dendritic cells by a mechanism that required Toll-like receptor 7, the adaptor MyD88 and the transcription factor IRF1, all of which localized together with bacterial products in degradative vacuoles bearing lysosomal markers. Thus, this cell type-specific recognition pathway links lysosomal recognition of bacterial RNA with a robust, host-protective interferon response.
Group B streptococcus (GBS) is a frequent agent of life-threatening sepsis and meningitis in neonates and adults with predisposing conditions. We tested the hypothesis that activation of the inflammasome, an inflammatory signaling complex, is involved in host defenses against this pathogen. We show here that murine bone marrow-derived conventional dendritic cells responded to GBS by secreting IL-1β and Il-18. IL-1β release required both pro-IL-1β transcription and caspase-1-dependent proteolytic cleavage of intracellular pro-IL-1β. Dendritic cells lacking the TLR adaptor MyD88, but not those lacking TLR2, were unable to produce pro-IL-1β mRNA in response to GBS. Pro-IL-1β cleavage and secretion of the mature IL-1β form depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) sensor and the apoptosis-associated speck-like protein containing a CARD (ASC) adaptor. Moreover, activation of the NLRP3 inflammasome required GBS expression of β-hemolysin, an important virulence factor. We further found that mice lacking NLRP3, ASC or caspase-1 were considerably more susceptible to infection than wild-type mice. Our data link the production of a major virulence factor by GBS with the activation of a highly effective anti-GBS response triggered by the NLRP3 inflammasome.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The ability of this bacterium to adhere to epithelial cells is considered as an essential early step in colonization and infection. By screening a whole genome phage display library with sera from infected patients, we previously identified three antigenic fragments matching open reading frame spr0075 of the strain R6 genome. This locus encodes for an ϳ120-kDa protein, herein referred to as plasminogen-and fibronectin-binding protein B (PfbB), which displays an LPXTG cell wall anchoring motif and six repetitive domains. In this study, by using isogenic pfbB-deleted mutants of the encapsulated D39 and of the unencapsulated DP1004 type 2 pneumococcal strains, we show that PfbB is involved in S. pneumoniae adherence to various epithelial respiratory tract cell lines. Our data suggest that PfbB directly mediates bacterial adhesion, because fluorescent beads coated with the recombinant PfbB sp17 fragment (encompassing one of the six repetitive domains and the C-terminal region) efficiently bound to epithelial cells. Mutants lacking PfbB bound to fibronectin and plasminogen considerably less efficiently than wild type bacteria, whereas sp17-coated beads specifically bound to both of these substrates. Taken together, our data suggest that, by directly interacting with fibronectin, PfbB significantly increases the ability of S. pneumoniae to adhere to human epithelial cells.
Despite convincing evidence for involvement of members of the Toll‐like receptor (TLR) family in fungal recognition, little is known of the functional role of individual TLRs in antifungal defenses. We found here that TLR7 was partially required for the induction of IL‐12 (IL‐12p70) by Candida albicans or Saccharomyces cerevisiae. Moreover, the IL‐12p70 response was completely abrogated in cells from 3d mice, which are unable to mob‐ilize TLRs to endosomal compartments, as well as in cells from mice lacking either the TLR adaptor MyD88 or the IRF1 transcription factor. Notably, purified fungal RNA recapitulated IL‐12p70 induction by whole yeast. Although RNA could also induce moderate TLR7‐dependent IL‐23 and tumor necrosis factor‐alpha (TNF‐α) secretion, TLR7 and other endosomal TLRs were redundant for IL‐23 or TNF‐α induction by whole fungi. Importantly, mice lacking TLR7 or IRF1 were hypersusceptible to systemic C. albicans infection. Our data suggest that IRF1 is downstream of a novel, nonredundant fungal recognition pathway that has RNA as a major target and requires phagosomal recruitment of intracellular TLRs. This pathway differs from those involved in IL‐23 or TNF‐α responses, which we show here to be independent from translocation of intracellular TLRs, phagocytosis, or phagosomal acidification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.