Gemcitabine, oxaliplatin, leucovorin, and 5-fluorouracil (GOLF) is a novel multidrug regimen inducing high levels of necrosis and apoptosis in colon carcinoma cells. This regimen is also able to promote a process of Ag remodeling including up-regulation of immunotherapy targets like carcinoembryonic Ag (CEA), thymidylate synthase (TS). We have conducted a preclinical study aimed to investigate whether these drug-induced modifications would also enhance colon cancer cell immunogenicity. Several CTL lines were thus generated by in vitro stimulating human HLA-A(*)02.01+ PBMCs, from normal donors and colon cancer patients, with autologous dendritic cells cross-primed with cell lysates of colon cancer cells untreated, irradiated, or previously exposed to different drug treatments including the GOLF regimen. Class I HLA-restricted cytolytic activity of these CTL lines was tested against colon cancer cells and CEA and TS gene transfected target cells. These experiments revealed that CTLs sensitized with GOLF-treated cancer cells were much more effective than those sensitized with the untreated colon carcinoma cells or those exposed to the other treatments. CTL lines sensitized against the GOLF-treated colon cancer cells, also expressed a greater percentage of T-lymphocyte precursors able to recognize TS- and CEA-derived peptides. These results suggest that GOLF regimen is a powerful antitumor and immunomodulating regimen that can make the tumor cells a suitable means to induce an Ag-specific CTL response. These results suggest that a rationale combination of GOLF chemotherapy with cytokine-based immunotherapy could generate a chemotherapy-modulated Ag-specific T-lymphocyte response in cancer patients able to destroy the residual disease survived to the cytotoxic drugs.
Nonpeptide antigens (including glycolipids of microbial origin) can be presented to T cells by CD1 molecules expressed on monocyte-derived dendritic cells. These HLA unrestricted responses appear to play a role in host immunity against Mycobacterium tuberculosis and other pathogenic bacteria. It is known that vaccination with Mycobacterium bovis bacillus Calmette-Guérin (BCG) has limited efficacy in many clinical settings, although the reasons for its inadequacy remain unclear. Here we have investigated the influence of BCG on the induction of CD1b on human monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF), which is believed to be the principal inducer of this antigen-presenting molecule. Although BCG alone led to a slight induction of CD1b expression, this agent reduced markedly the ability of GM-CSF to induce high levels of CD1b that were typically observed in uninfected cells. Inhibition of CD1b expression in BCG-infected monocytes was apparent at both the mRNA transcript and CD1b protein levels. Down-regulation of CD1b expression by BCG was mediated, at least in part, by one or more soluble factors and could not be reversed with high concentrations of GM-CSF or a variety of other cytokines. The present results suggest that BCG could diminish the efficiency of CD1-restricted T-cell responses against nonpeptide mycobacterial antigens by reducing CD1 expression on antigen-presenting cells. These findings have potential implications for understanding the nature of the immune response elicited by BCG in humans and suggest potential strategies that could be important for the development of better vaccines for the prevention of tuberculosis.Data from the world literature show that morbidity and mortality from mycobacterial infections are continuously increasing (3,9,17). This appears to be due not only to a higher transmission rate of the disease, especially in immunocompromised human immunodeficiency virus (HIV)-infected patients (2, 5), but also to the emergence of multidrug-resistant strains of Mycobacterium tuberculosis (17,21,25). Therefore, effective early vaccination of individuals at high risk for developing active tuberculosis has been targeted as an important approach for tuberculosis control. Vaccination against M. tuberculosis has been attempted on a large scale using Mycobacterium bovis bacillus Calmette-Guérin (BCG), a live attenuated strain. However, the results of clinical trials that enrolled an extraordinary number of cases immunized with BCG were not consistently appealing (24,29). A recent meta-analysis of the literature showed that the vaccine significantly reduces the risk of tuberculosis by an average of only 50% (4). The reasons why BCG does not provide optimal protection are not clear, since the organism is known to share a number of major histocompatibility complex (MHC)-restricted antigens with virulent M. tuberculosis and also activates ␥␦ T cells that may facilitate the responses of CD4 ϩ and CD8 ϩ responder T cells that are important in maintaining immunity to M. t...
These results indicate that the DNA-damaging effect of BLM is amplified by GH and, more markedly, IGF-I and -II. IGF-I and -II also stimulate p53 protein expression that, taking part in DNA repair, may counteract the IGF action on genome stability.
5-Fluorouracil (5-FU) is a pyrimidine antimetabolite active against colorectal carcinoma and other malignancies of the digestive tract. Over-expression or mutation of thymidylate synthase (TS), the target enzyme of the 5-FU metabolite, 5-fluorodeoxyuridine monophosphate, is strictly correlated with cancer cell resistance to 5-FU. On this basis we investigated whether TS is a potential target for active specific immunotherapy of human colon carcinoma, which acquires resistance to 5-FU. Three TS-derived epitope peptides which fit defined amino acid consensus motifs for HLA-A2.1 binding were synthesized and investigated for their ability to induce human TS-specific cytotoxic T cell (CTL) responses in vitro. CTL lines specific for each peptide were established by stimulating peripheral blood mononuclear cells (PBMC) from an HLA-A2.1+ healthy donor with autologous dendritic cells loaded with TS peptide. Specific CTL lines showed HLA-A2.1-restricted cytotoxicity in vitro to HLA-A2.1+ target cells pulsed with the specific TS peptide and to HLA-class I matching colon carcinoma target cells over-expressing TS enzyme after exposure to 5-FU. Recognition by CTL lines suggests that these TS peptides may be potential candidates for use in a peptide-based vaccine against 5-FU resistant colon carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.