Binary granular mixtures are known to show various packing arrangements depending on both fractions and size ratios of their components. While the final packing fraction can be estimated by geometrical arguments, the dynamics of the pile submitted to gentle vibrations towards a dense state is seen to be highly size ratio dependent. We observe experimentally a diverging compaction characteristic time close to a critical size ratio, such that the grain mobility in the packing is the lowest close to the percolation threshold, when small particles can pass through the voids left by the large ones. Moreover, we evidence a fast compaction dynamics regime when the grain size ratio is large enough.
We study the effect of three types of mesoporous silica (MPS) particles on the flow of three common excipients: microcrystalline cellulose, lactose and maize starch. While MPS are commonly considered as excipient and also as drug delivery carrier, the effects of MPS as flow aid additive and as powder stabilizer are investigated. MPS particles, called additive in the present study, are found to decrease powder cohesiveness, in particular for powders having higher water content and higher initial cohesiveness. According to both particle and pore size of MPS particles, the effect can be immediate (for small MPS particles having small pore size) or on the longer term (for larger MPS particles having higher pore size). Moreover, the electrostatic properties of the blends are modified by the presence of MPS. The quantity of electrostatic charge created in the blends during a flow in contact with stainless steel is decreased by the addition of MPS. We show that this decrease is induced by a modification of electric resistivity.
In the study of microscopic flows, self-propulsion has been particularly topical in recent years, with the rise of miniature artificial swimmers as a new tool for flow control, low Reynolds number mixing, micromanipulation or even drug delivery. It is possible to take advantage of interfacial physics to propel these micro-robots, as demonstrated by recent experiments using the proximity of an interface, or the interface itself, to generate propulsion at low Reynolds number. This paper discusses how a nearby interface can provide the symmetry breaking necessary for propulsion. An overview of recent experiments illustrates how forces at the interface can be used to generate locomotion. This paper then presents original results concerning two systems. The first is composed of floating ferromagnetic spheres that assemble through capillarity into swimming structures. The second system, also powered by a magnetic field, is a centimetersized piece that swims similarly to water striders.
For reaching high packing fractions, grains of various sizes are often mixed together allowing the small grains to fill the voids created by the large ones. However, in most cases, granular segregation occurs leading to lower packing fractions. We show how a layered packing or a gradient segregation affects the global packing fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.