Among non-destructive inspection (NDI) techniques, General Visual Inspection (GVI), global or zonal, is the most widely used, being quick and relatively less expensive. In the aeronautic industry, GVI is a basic procedure for monitoring aircraft performance and ensuring safety and serviceability, and over 80% of the inspections on large transport category aircrafts are based on visual testing, both directly and remotely, either unaided or aided via mirrors, lenses, endoscopes or optic fiber devices coupled to cameras. This paper develops the idea of a global and/or zonal GVI procedure implemented by means of an autonomous unmanned aircraft system (UAS), equipped with a low-cost, high-definition (HD) camera for carrying out damage detection of panels, and a series of distance and trajectory sensors for obstacle avoidance and inspection path planning. An ultrasonic distance keeper system (UDKS), useful to guarantee a fixed distance between the UAS and the aircraft, was developed, and several ultrasonic sensors (HC-SR-04) together with an HD camera and a microcontroller were installed on the selected platform, a small commercial quad-rotor (micro-UAV). The overall system concept design and some laboratory experimental tests are presented to show the effectiveness of entrusting aircraft inspection procedures to a small UAS and a PC-based ground station for data collection and processing.
UAS (Unmanned Aircraft System) technologies are today extremely required in various fields of interest, from military to civil (search and rescue, environmental surveillance and monitoring, and entertainment). Besides safety and legislative issues, the main obstacle to civilian applications of UAS systems is the short time of flight (endurance), which depends on the equipped power system (battery pack) and the flight mission (low/high speed or altitude). Long flight duration is fundamental, especially with tasks that require hovering capability (e.g., river flow monitoring, earthquakes, devastated areas, city traffic monitoring, and archeological sites inspection). This work presents the conceptual design of a Hybrid Unmanned Aircraft System (HUAS), merging a commercial off-the-shelf quadrotor and a balloon in order to obtain a good compromise between endurance and weight. The mathematical models for weights estimation and balloon static performance analysis are presented, together with experimental results in different testing scenarios and complex environments, which show 50% improvement of the flight duration.
Unmanned Aerial Vehicles (UAV) with on-board augmentation systems (UAS, Unmanned Aircraft System) have penetrated into civil and general-purpose applications, due to advances in battery technology, control components, avionics and rapidly falling prices. This paper describes the conceptual design and the validation campaigns performed for an embedded precision Positioning, field mapping, Obstacle Detection and Avoiding (PODA) platform, which uses commercial-off-the-shelf sensors, i.e., a 10-Degrees-of-Freedom Inertial Measurement Unit (10-DoF IMU) and a Light Detection and Ranging (LiDAR), managed by an Arduino Mega 2560 microcontroller with Wi-Fi capabilities. The PODA system, designed and tested for a commercial small quadcopter (Parrot Drones SAS Ar.Drone 2.0, Paris, France), estimates position, attitude and distance of the rotorcraft from an obstacle or a landing area, sending data to a PC-based ground station. The main design issues are presented, such as the necessary corrections of the IMU data (i.e., biases and measurement noise), and Kalman filtering techniques for attitude estimation, data fusion and position estimation from accelerometer data. The real-time multiple-sensor optimal state estimation algorithm, developed for the PODA platform and implemented on the Arduino, has been tested in typical aerospace application scenarios, such as General Visual Inspection (GVI), automatic landing and obstacle detection. Experimental results and simulations of various missions show the effectiveness of the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.