In an initial application of the method, we have added the sequences encoding the FLAG and 3xFLAG and influenza virus hemagglutinin epitopes to various genes of Salmonella enterica serovar Typhimurium, including putative and established pathogenic determinants present in prophage genomes. Epitope fusion proteins were detected in bacteria growing in vitro, tissue culture cells, and infected mouse tissues. This work identified a prophage locus specifically expressed in bacteria growing intracellularly. The procedure described here should be applicable to a wide variety of Gram-negative bacteria and is particularly suited for the study of intracellular pathogens.
Summary Background Efforts to quantify the global burden of enteric fever are valuable for understanding the health lost and the large-scale spatial distribution of the disease. We present the estimates of typhoid and paratyphoid fever burden from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, and the approach taken to produce them. Methods For this systematic analysis we broke down the relative contributions of typhoid and paratyphoid fevers by country, year, and age, and analysed trends in incidence and mortality. We modelled the combined incidence of typhoid and paratyphoid fevers and split these total cases proportionally between typhoid and paratyphoid fevers using aetiological proportion models. We estimated deaths using vital registration data for countries with sufficiently high data completeness and using a natural history approach for other locations. We also estimated disability-adjusted life-years (DALYs) for typhoid and paratyphoid fevers. Findings Globally, 14·3 million (95% uncertainty interval [UI] 12·5–16·3) cases of typhoid and paratyphoid fevers occurred in 2017, a 44·6% (42·2–47·0) decline from 25·9 million (22·0–29·9) in 1990. Age-standardised incidence rates declined by 54·9% (53·4–56·5), from 439·2 (376·7–507·7) per 100 000 person-years in 1990, to 197·8 (172·0–226·2) per 100 000 person-years in 2017. In 2017, Salmonella enterica serotype Typhi caused 76·3% (71·8–80·5) of cases of enteric fever. We estimated a global case fatality of 0·95% (0·54–1·53) in 2017, with higher case fatality estimates among children and older adults, and among those living in lower-income countries. We therefore estimated 135·9 thousand (76·9–218·9) deaths from typhoid and paratyphoid fever globally in 2017, a 41·0% (33·6–48·3) decline from 230·5 thousand (131·2–372·6) in 1990. Overall, typhoid and paratyphoid fevers were responsible for 9·8 million (5·6–15·8) DALYs in 2017, down 43·0% (35·5–50·6) from 17·2 million (9·9–27·8) DALYs in 1990. Interpretation Despite notable progress, typhoid and paratyphoid fevers remain major causes of disability and death, with billions of people likely to be exposed to the pathogens. Although improvements in water and sanitation remain essential, increased vaccine use (including with typhoid conjugate vaccines that are effective in infants and young children and protective for longer periods) and improved data and surveillance to inform vaccine rollout are likely to drive the greatest improvements in the global burden of the disease. Funding Bill & Melinda Gates Foundation.
Salmonella constitutes a genus of zoonotic bacteria of worldwide economic and health importance. The current view of salmonella taxonomy assigns the members of this genus to two species: S. enterica and S. bongori. S. enterica itself is divided into six subspecies, enterica, salamae, arizonae, diarizonae, indica, and houtenae, also known as subspecies I, II, IIIa, IIIb, IV, and VI, respectively [1]. Members of Salmonella enterica subspecies enterica are mainly associated with warm-blooded vertebrates and are usually transmitted by ingestion of food or water contaminated by infected faeces. The pathogenicity of most of the distinct serotypes remains undefined, and even within the most common serotypes, many questions remain to be answered regarding the interactions between the organism and the infected host.Salmonellosis manifests itself in three major forms: enteritis, septicaemia, and abortion, each of which may be present singly or in combination, depending on both the serotype and the host involved. Although currently over 2300 serovars of Salmonella are recognized, only about 50 serotypes are isolated in any significant numbers as human or animal pathogens [2, 3] and they all belong to subspecies enterica. Of these, most cause acute gastroenteritis characterized by a short incubation period and a severe systemic disease in man or animals, characterized by septicaemia, fever and/or abortion, and such serotypes are often associated with one or few host species [4–6].It is the intention of this review to present a summary of current knowledge of these host-adapted serotypes of S. enterica. The taxonomic relationships between the serotypes will be discussed together with a comparison of the pathology and pathogenesis of the disease that they cause in their natural host(s). Since much of our knowledge on salmonellosis is based on the results of work on Typhimurium, this serotype will often be used as the baseline in discussion. It is hoped that an appreciation of the differences that exist in the way these serotypes interact with the host will lead to a greater understanding of the complex host–parasite relationship that characterizes salmonella infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.