The paper introduces the on-going project Re-NetTA, which contributes to apply circular economy in the building sector, focusing on tertiary sector building components, characterized by rapid obsolescence and temporary uses. The Re-NetTA project identifies re-manufacturing and reuse networks and processes as tools to reduce the generation of waste deriving from renewals/transformations carried out on short-term cycles, applying Life Cycle Management and sustainable business models. The goal is to maintain over time the value of the environmental and economic resources, integrated into manufactured products, once they have been removed from buildings, extending their useful life and their usability with the least possible consumption of other materials and energy and with the maximum containment of emissions into the environment. At first, the paper shows how circular economy can be applied to the built environment, according to literature. Secondly, the problem of waste coming from renewal interventions, carried out on short-term cycles of the tertiary sector, is discussed on quantitative data. Consequently, the aims of the research and the methodology, based on an interdisciplinary approach, are introduced. Finally, the research output is pointed out, highlighting the related economic, environmental, and social impacts.
The architecture design today has new expressive features due to the parametric and computational modelling software, which greatly amplify the potential of language. This condition makes it possible to generate customised elements and systems through a process of cyber-physical interaction between design and architectural production. As well as the geometric constraints, dictated by manufacturing and assembly processes of materials, they can be incorporated in the generative design codes. The article examines the possibility to also include the main conditions that enable the selective disassembly of the elements and their reuse at the end of life, avoiding the generation of parts that are not remanufacturable or reusable.
Classification and development of the deployable structures is an ongoing process that started at the end of 20th century and is getting more and more attention throughout 21st. With the development of the technology, constructive systems and materials, these categorizations changed – adding new typologies and excluding certain ones. This work is giving a critical review of the work done previously and on the change of the categories. The special interest is given to the pantographs (or scissor structures) and the Zeigler’s dome as the form of their application. It is noticeable that after its introduction in 1977, the dome was a part of the initial classification, but with the time it lost its place. The reason for this is the introduction of more efficient scissor dome structures. However, perhaps with the use of data-driven design, this dome can be optimized and become relevant again. The second part of the paper is dedicated to the development of the structural optimization algorithm for panto-graph structures and its application on the example of Zeigler’s dome. Besides the direct analysis, the final part includes the generative optimization algorithm which could help to a decision-maker in the early stages of the design to understand and select the options for the structure.
Biopolymers have been increasingly introduced in some application sectors, such as food packaging, fashion, and design objects, while the typical technical textiles for architecture remain polymeric composites, based on the use of non-renewable resources. In lightweight construction and textile architecture, the introduction of novel materials requires a long process of verification of their performances, in order to guarantee the safety levels required by building standards. The paper aims to focus on potentiality and constrains to the application of more eco-friendly coated textiles, woven, and non-woven membranes in architecture. The paper proposes a couple of strategies and best practices to be applied in lightweight architecture: (1) creating fabrics from recycled fibers, on the one hand, and (2) acting on the coating with biopolymers, on the other hand. Eventually, the paper focuses on some recent experimental research led by the authors at the ABC Department, on the environmental assessment of ultra-lightweight materials, based on the LCA methodology.
Capability of construction companies to manage the digital interoperability between stakeholders and technicians is fundamental for the success of a work, both for new constructions and renovations. The research outlines a methodological and operational protocol for general contractors and the related supply chains and subcontractors. The Programme contains indications for the development of BIM-based workflows that implement the main activities in building construction, operations and maintenance: off-site and on-site time schedules, site planning and building ergotechnics, accounting, project variances, non-compliance issues, test and commissioning, maintenance planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.