The high mobility group A (HMGA) chromatin architectural transcription factors are a group of proteins involved in development and neoplastic transformation. They take part in an articulated interaction network, both with DNA and other nuclear proteins, organizing multimolecular complexes at chromatin level. Here, we report the development of a novel in vitro strategy for the identification of HMGA molecular partners based on the combination of an RP-HPLC prefractionation procedure, 2-DE gels, blot-overlay and MS. To demonstrate that our approach could be a reliable screening method we confirmed a representative number of interactions in vitro by GST pull-down and far-Western and in vivo by co-affinity purification. This approach allowed us to enlarge the HMGA molecular network confirming their involvement also in non-transcriptional-related processes such as RNA processing and DNA repair.
HMGA is a family of nuclear proteins involved in a huge number of functions at the chromatin level. It consists of three members, HMGA1a, HMGA1b, and HMGA2, having high sequence homology and sharing the same structural organization (three highly conserved DNA-binding domains, an acidic C-terminal tail, and a protein-protein interaction domain). They are considered important nodes in the chromatin context, establishing a complex network of interactions with both promoter/enhancer sequences and nuclear factors. They are involved in a plethora of biological processes and their activities are finely tuned by several different post-translational modifications. We have performed an LC/MS screening on several different cell lines to investigate HMGA proteins expression and their post-translational modifications in order to detect distinctive modification patterns for each. Our analyses evidenced relevant macroscopic differences in the phosphorylation and methylation patterns of these proteins. These differences occur both within the HMGA family members and in the different cell types. Focusing on HMGA2, we have mapped its in vivo phosphorylation sites demonstrating that, similarly to the HMGA1 proteins, it is highly phosphorylated on the acidic C-terminal tail and that these modifications affect its DNA binding properties.
High Mobility Group A proteins (HMGA1 and HMGA2) are architectural nuclear factors involved in development, cell differentiation, and cancer formation and progression. Here we report the cloning, developmental expression and functional analysis of a new multi-AT-hook factor in Xenopus laevis (XHMG-AT-hook) that exists in three different isoforms. Xhmg-at-hook1 and 3 isoforms, but not isoform 2, are expressed throughout the entire development of Xenopus, both in the maternal and zygotic phase. Localized transcripts are present in the animal pole in the early maternal phase; during the zygotic phase, mRNA can be detected in the developing central nervous system (CNS), including the eye, and in the neural crest. We show evidence that XHMG-AT-hook proteins differ from typical HMGA proteins in terms of their properties in DNA binding and in protein/protein interaction. Finally, we provide evidence that they are involved in early CNS development and in neural crest differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.