We introduce HDBIP an extension of the Behavior Interaction Priority (BIP) framework. BIP is a component-based framework with a rigorous operational semantics and high-level and expressive interaction model. HDBIP extends BIP interaction model by allowing heterogeneous interactions targeting distributed systems. HDBIP allows both multiparty and direct send/receive interactions that can be directly mapped to an underlying communication library. Then, we present a correct and efficient code generation from HDBIP to C++ implementation using Message Passing Interface (MPI). We present a non-trivial case study showing the effectiveness of HDBIP.
In this paper, we propose Rec2Poly, a framework which detects automatically if recursive programs may be transformed into affine loops that are compliant with the polyhedral model. If successful, the replacing loops can then take advantage of advanced loop optimizing and parallelizing transformations as tiling or skewing. Rec2Poly is made of two main phases: an offline profiling phase and an inspector-executor phase. In the profiling phase, the original recursive program, which has been instrumented, is run. Whenever possible, the trace of collected information is used to build equivalent affine loops from the runtime behavior. Then, an inspector-executor program is automatically generated, where the inspector is made of a light version of the original recursive program, whose aim is reduced to the generation and verification of the information which is essential to ensure the correctness of the equivalent affine loop program. The collected information is mainly related to the touched memory addresses and the control flow of the socalled "impacting" basic blocks of instructions. Moreover, in order to exhibit the lowest possible time-overhead, the inspector is implemented as a parallel process where several memory buffers of information are verified simultaneously. Finally, the executor is made of the equivalent affine loops that have been optimized and parallelized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.