Diagnosis of breast cancer (BC) by using sensitive and specific biomarkers is necessary. Cell-free DNA is a candidate biomarker in various cancers. Contrasting, shorted uniformed DNA released from apoptotic non-diseased cells, DNA released from malignant cells varies in size. DNA integrity is a ratio between 247 and 115 bp. So, this study was designed to investigate the role of plasma ALU-247, ALU-115, and DNA integrity as possible diagnostic and prognostic markers in BC patients as compared to plasma CA15.3. The concentrations of selected parameters were determined for 40 patients with BC (2 stage I, 31 stage II, 2 stage III, and 5 stage IV) and 10 healthy volunteers by quantitative real-time PCR and ELISA. The sensitivities of ALU-247, ALU-115, and cfDI as biomarkers for BC were evaluated and compared with CA15.3. Also, disease-free survival and overall survival were estimated. For all parameters, the concentrations in patients were significantly higher than in the control group; association with tumor stage and high sensitivities was observed. The studied parameters failed to predict survival or relapse in BC patients before surgery. Plasma ALU-247, ALU-115, and DNA integrity may prove to have clinical utility in BC diagnosis. Elevated preoperative CA15.3 was shown to be directly related to tumor burden, which may improve its diagnostic capability. Those selected parameters could be effectively used together with plasma CA15.3 for BC screening at early stage. Furthermore, both ALU-247 and ALU-115 seem to be preoperative prognostic markers for BC.
Background Breast cancer (BC) is the leading cause of cancer death in women worldwide. Most BC studies on candidate microRNAs were tissue specimen based. Recently, there has been a focus on the study of cell‐free circulating miRNAs as promising biomarkers in (BC) diagnosis and prognosis. Therefore, we aimed to investigate the circulating levels of miR‐10b and its target soluble E‐ cadherin as potentially easily accessible biomarkers for breast cancer. Methods Sixty‐one breast cancer patients and forty‐eight age‐ and sex‐matched healthy volunteers serving as a control group were enrolled in the present study. Serum samples were used to assess miRNA10b expression by TaqMan miRNA assay technique. In addition, soluble E‐cadherin expression level in serum was determined using ELISA technique. Result Circulating miR‐10b expression level and serum sE‐cadherin was significantly upregulated in patients with BC compared to controls. Moreover, serum miR‐10b displayed progressive up‐regulation in advanced stages with higher level in metastatic compared to non‐metastatic BC. Additionally, the combined use of both serum miR‐10b and sE‐cadherin revealed the highest sensitivity and specificity for detection of BC metastasis (92.9% and 97.9% respectively) with an area under curve (AUC) of 0.98, 95% CI (0.958–1.00). Conclusion Our data suggest that circulating miR‐10b could be utilized as a potential non‐invasive serum biomarker for diagnosis and prognosis of breast cancer with better performance to predict BC metastasis achieved on measuring it simultaneously with serum sE‐cadherin. Further studies with a large cohort of patients are warranted to validate the serum biomarker for breast cancer management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.