Poverty data are usually collected through on-the-ground household-based socioeconomic surveys. Unfortunately, data collection with such conventional methods is expensive, laborious, and time-consuming. Additional information that can describe poverty with better granularity in scope and at lower cost, taking less time to update, is needed to address the limitations of the currently existing official poverty data. Numerous studies have suggested that the poverty proxy indicators are related to economic spatial concentration, infrastructure distribution, land cover, air pollution, and accessibility. However, the existing studies that integrate these potentials by utilizing multi-source remote sensing and geospatial big data are still limited, especially for identifying granular poverty in East Java, Indonesia. Through analysis, we found that the variables that represent the poverty of East Java in 2020 are night-time light intensity (NTL), built-up index (BUI), sulfur dioxide (SO2), point-of-interest (POI) density, and POI distance. In this study, we built a relative spatial poverty index (RSPI) to indicate the spatial poverty distribution at 1.5 km × 1.5 km grids by overlaying those variables, using a multi-scenario weighted sum model. It was found that the use of multi-source remote sensing and big data overlays has good potential to identify poverty using the geographic approach. The obtained RSPI is strongly correlated (Pearson correlation coefficient = 0.71 (p-value = 5.97×10−7) and Spearman rank correlation coefficient = 0.77 (p-value = 1.58×10−8) to the official poverty data, with the best root mean square error (RMSE) of 3.18%. The evaluation of RSPI shows that areas with high RSPI scores are geographically deprived and tend to be sparsely populated with more inadequate accessibility, and vice versa. The advantage of RSPI is that it is better at identifying poverty from a geographical perspective; hence, it can be used to overcome spatial poverty traps.
Rainfall modeling is one of the most critical factors in agricultural monitoring and statistics, transportation schedules, and urban flood prevention. Weather anomaly during the dry season in urban coastal areas of tropical countries such as Jakarta, Indonesia has become a challenging issue that causes unexpected changes in rain patterns. In this paper, we propose the Bayesian Network (BN) approach to model the probabilistic nature of rain patterns in urban areas and causal relationships among its predictor variables. Rain occurrences are predicted using temperature, relative humidity, mean-sea level (MSL) pressure, cloud cover, and precipitation variables. Data are obtained from the remote sensing sources of the National Oceanic and Atmospheric Administration (NOAA) satellite in Jakarta 2020-2021. We compare both of the score-based, i.e., Hill Climbing (HC), and hybrid structure learning algorithms of Bayesian Network including the techniques of Max-Min Hill Climbing (MMHC), General 2-Phase Restricted Maximization (RSMAX2), and Hybrid-Hybrid Parents & Children (H2PC). Further, we also compare the performance of score-based model (Hill Climbing) under five different popular scorings: Bayesian Information Criterion (BIC), K2, Log-Likelihood, Bayesian Dirichlet Equivalent (BDE), and Akaike Information Criterion (AIC) methods. The main contributions of this study are as follows: (1) insights that the hybrid structure learning algorithms of Bayesian Network models are either superior in performance or at least comparable to its score-based counterparts (2) our proposed best performed Bayesian Network model that is able to predict the rain occurrences in Jakarta with a promising overall accuracy of more than 81 percent.
Untuk mendukung pertumbuhan ekonomi hijau Indonesia, diperlukan analisis lebih lanjut terkait aktivitas ekonomi di masa pandemi dan keterkaitannya dengan kondisi lingkungan. Penelitian ini bertujuan untuk menerapkan pendekatan Bayesian Network dalam memodelkan kondisi ekonomi hijau Indonesia di masa pandemi berdasarkan variabel-variabel yang disinyalir dapat berpengaruh seperti aktivitas ekonomi, kualitas udara, tingkat mobilitas penduduk, dan kasus positif COVID-19 yang diperoleh melalui big data. Model Bayesian Network yang dikonstruksi secara manual dengan algoritma Maximum Spanning Tree dipilih sebagai model terbaik dengan rata-rata akurasi 5-cross validation dalam memprediksi empat kelas PDRB sebesar 0,83. Model terbaik yang dipilih menunjukkan bahwa kondisi ekonomi Indonesia di era pandemi secara langsung dipengaruhi oleh intensitas cahaya malam (NTL) yang menunjukkan aktivitas ekonomi, kualitas udara (AQI), dan kasus positif COVID-19. Analisis parameter learning menunjukkan bahwa pertumbuhan ekonomi provinsi-provinsi Indonesia masih cenderung belum sejalan dengan terpeliharanya kualitas udara sehingga usaha untuk mencapai kondisi ekonomi hijau masih harus ditingkatkan.
Untuk memaksimalkan potensi penjualan produk fashion muslim di DKI Jakarta melalui e-commerce sebagai salah satu strategi peningkatan aktivitas dunia usaha yang dicanangkan oleh pemerintah dalam Pemulihan Ekonomi Nasional (PEN), stakeholder, dalam hal ini pemerintah dan pelaku usaha, perlu mengetahui pola penjualan produk fashion muslim. Penelitian ini bertujuan untuk menganalisis secara deskriptif penjualan produk fashion muslim di DKI Jakarta melalui e-commerce dan membangun information dashboard menggunakan javascript untuk visualisasi data serta json untuk menyimpan data. Data yang digunakan adalah data penjualan produk fashion muslim di wilayah DKI Jakarta pada 19 April-11 Mei 2021 yang diambil dengan metode web-scraping pada website Tokopedia. Information dashboard pada penelitian ini berhasil dibangun dengan performa baik. Secara umum, penjualan produk fashion muslim cenderung tinggi di awal dan di pertengahan bulan Ramadhan. Wilayah DKI Jakarta dengan kontribusi penjualan produk fashion muslim terbanyak adalah Jakarta Pusat, sedangkan wilayah dengan omset penjualan produk fashion muslim tertinggi adalah Jakarta Barat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.