In this study, an innovative hybrid machine learning-technique is used for the early skin cancer diagnosis fusing Convolutional Neural Network and Multilayer Perceptron to analyze images and information related to the skin cancer. This information is extracted manually after applying different color space conversions on the original images for better screening of the lesions. The proposed architecture is compared with standalone architecture in addition to some other techniques by commonly used evaluation metrics. HAM10000 dataset is used for training and testing as this data contain seven different skin lesions. The novelty of the proposed hybrid model is the structure of the network which handles structured data (patients' metadata and other useful features from different color spaces related to the illumination, energy, darkness, etc.) and unstructured data (images). The results show an overall 86%, 95% top-1 and top-2 accuracy respectively, and 96% area under the curve for the seven classes. The study demonstrates the superiority of the proposed hybrid model with a 2% improvement in the accuracy over the standalone model and a promising behavior as compared to the ensemble techniques. The follow-up research will include more patient data to develop a skin cancer detection device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.