This article investigates the effect of carbon steel slag (CS) and stainless steel slag (SS) on the hydration of cement (OPC). Two slags were used to replace cement at a replacement ratio of 15% (CS15 and SS15) and 30% (CS30 and SS30), respectively, by binder weight. Test results demonstrated that the hydration rate of OPC-CS binder is similar to that of OPC-SS binder at 3 days but higher than the latter at later ages. The negative effect of steel slag (CS) on the strength of cement mortar can be neglected when its replacement ratio does not exceed 15%. X-ray diffraction (XRD) and thermogravimetry (TG) show that the incorporation of SS tends to decrease calcium hydroxide (CH) content more than the incorporation of CS in the cement matrix. BSE (backscattered electron)/EDX (energy-dispersive X-ray spectroscopy) analyses estimate the average Si/Ca ratio of CS30 and SS30 at 90 days to be 0.41(Ca/Si = 2.44) and 0.45(Ca/Si = 2.22), respectively, compared to 0.43 (Ca/Si = 2.33) for pure cement.
This work aims to make a comparative study on high-fineness, basic-oxygen-furnace, carbon steel slag (CS) and electric-arc-furnace stainless steel slag (SS) with high fineness to assess the possibility of using them as hydraulic binders. Test results reveal that CS has higher early hydraulic properties than SS, which has a higher rate of activity at later ages than at early ages (but still lower than that of CS), confirmed by compressive strength and mercury intrusion porosimeter (MIP) test results. Calorimetric analysis showed exothermic reactions in both slags. X-ray diffraction (XRD), thermogravimetry/differential scanning calorimetry (TG/DSC), Fourier transform-infrared spectra (FTIR), and scanning electron microscopy (SEM) results indicated that the hydration products of CS were mainly calcium silicate hydrate (C-S-H), calcium aluminate hydrate (C-A-H), calcium aluminate silicate hydrate (C-A-S-H), aluminum hydroxide (Al(OH)3 [AH3]), and calcium hydroxide (Ca(OH)2 [CH]); however, C-S-H was the only hydration product of SS. The microchemical analysis showed that the average silicon/calcium atom ratios for the hydration products in 90-day hydrated CS and SS pastes were 0.31 and 0.52, respectively. Wavelength-dispersive X-ray spectroscopy (WDS) mapping at 90 days for both slags revealed that silicon and calcium are included in the hydrated matrix surrounding slag particles, with the addition of aluminum in CS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.