Adenovirus serotype 5 (Ad5) continues to be regarded as a gene delivery vehicle of high utility for a variety of clinical applications. However, targeting of the virus to alternate, non-native receptors has become a mandate for many gene therapy approaches, as inefficient viral transduction of target tissues has proven detrimental to the utility of Ad5. Thus, various targeting strategies have been endeavored to the end of highly specific cellular transduction, including that of genetic manipulation of the viral capsid. Modification of the tropism-determining fiber protein and other capsid locales has allowed vectorologists to develop vectors that are highly superior to the first-generation adenoviruses employed for gene therapy. Herein, the various genetic targeting strategies for Ad5 are reviewed, and the various schemas in which targeted transduction has been achieved with tropism-modified vectors are outlined.
Dendritic cell (DC) based tumor vaccination usually involves the administration of ex vivo generated autologous DC. Transduction of DC by viral vectors in vivo has been proposed as a more standardized and easily clinically applicable approach. Previously, we have reported that an Ad5 vector targeted to CD40 via genetic capsid incorporation of CD40L achieves selective transduction of DC in vitro. In the present study, we evaluate the ability of this vector to deliver transgenes in a stringent human substrate system. We report the capacity of this CD40-targeted vector to infect, with high efficiency, cutaneous DC resident in human skin explants, while simultaneously inducing their activation and maturation. This latest generation of single-component, fully targeted vectors should make feasible the clinical testing of in vivo DC-targeted vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.