SUMMARY Chronic pancreatitis is a well-known risk factor for pancreatic ductal adenocarcinoma (PDA) development in humans, and inflammation promotes PDA initiation and progression in mouse models of the disease. However, the mechanistic link between inflammatory damage and PDA initiation is unclear. Using a Kras-driven mouse model of PDA, we establish that the inflammatory mediator Stat3 is a critical component of spontaneous and pancreatitis-accelerated PDA precursor formation and supports cell proliferation, metaplasia associated inflammation, and MMP7 expression during neoplastic development. Furthermore, we show that Stat3 signaling enforces MMP7 expression in PDA cells and that MMP7 deletion limits tumor size and metastasis in mice. Finally, we demonstrate that serum MMP7 level in human PDA patients correlated with metastatic disease and survival.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by near-universal mutations in KRAS and frequent deregulation of crucial embryonic signalling pathways, including the Hedgehog (Hh) and Wnt–β-catenin cascades. The creation of mouse models that closely resemble the human disease has provided a platform to better understand when and in which cell types these pathways are misregulated during PDAC development. Here we examine the central part that KRAS plays in the biology of PDAC, and how the timing and location of Hh and Wnt–β-catenin signalling dictate the specification and oncogenic properties of PDAC.
Cellular plasticity in adult organs is involved in both regeneration and carcinogenesis. WT mouse acinar cells rapidly regenerate following injury that mimics acute pancreatitis, a process characterized by transient reactivation of pathways involved in embryonic pancreatic development. In contrast, such injury promotes the development of pancreatic ductal adenocarcinoma (PDA) precursor lesions in mice expressing a constitutively active form of the GTPase, Kras, in the exocrine pancreas. The molecular environment that mediates acinar regeneration versus the development of PDA precursor lesions is poorly understood. Here, we used genetically engineered mice to demonstrate that mutant Kras promotes acinar-to-ductal metaplasia (ADM) and pancreatic cancer precursor lesion formation by blocking acinar regeneration following acute pancreatitis. Our results indicate that β-catenin is required for efficient acinar regeneration. In addition, canonical β-catenin signaling, a pathway known to regulate embryonic acinar development, is activated following acute pancreatitis. This regeneration-associated activation of β-catenin signaling was not observed during the initiation of Kras-induced acinar-to-ductal reprogramming. Furthermore, stabilized β-catenin signaling antagonized the ability of Kras to reprogram acini into PDA preneoplastic precursors. Therefore, these results suggest that β-catenin signaling is a critical determinant of acinar plasticity and that it is inhibited during Kras-induced fate decisions that specify PDA precursors, highlighting the importance of temporal regulation of embryonic signaling pathways in the development of neoplastic cell fates. IntroductionPancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer death in the United States (1). Analysis of patient samples and genetically engineered mouse models suggests that it likely develops from preneoplastic ductal lesions, including pancreatic intraepithelial neoplasias (PanINs) (2). Understanding how signaling pathways interact in the pancreatic epithelium to elicit PanINs therefore represents a key step in the possible development of tools for early PDA detection and treatment. While PanINs express markers of ductal differentiation, many recent studies suggest that they can arise from pancreatic acinar cells that are reprogrammed into a preneoplastic state by undergoing acinar-toductal metaplasia (ADM) (3-7).Activating mutations in the gene encoding the GTPase Kras are nearly universal in human PDA (8), and targeting of mutated Kras to mouse pancreatic progenitors recapitulates the human PanIN-to-PDA progression sequence (9). While ADM is observed in these models (6) and Kras can spontaneously induce ADM and PanIN formation when activated in adult acini (3, 4, 7), expression of mutant Kras in acinar cells does not guarantee ductal reprogramming. Acini expressing mutant Kras during embryogenesis appear grossly unaffected (9), and some normal acinar tissue is maintained in the context of PanIN and PDA progression as mice age (9, 10...
Background and aim: To compare cancer-specific survival (CSS) between patients who received neoadjuvant radiation followed by resection (NRR) and those who received upfront resection (UR) for locally advanced pancreatic cancer (LAPC). Methods: A total of 772 LAPC patients who underwent curative-intent surgical resection with or without neoadjuvant radiation from 2004 to 2013 were identified from the Surveillance, Epidemiology, and End Result (SEER) database. Propensity score matching (PSM) was conducted to eliminate possible bias. Kaplan-Meier method was used to analyze long-term outcome. Independent risk factors of CSS were predicted by Cox proportional hazards model. Subgroup analyses were done according to 5 variables. Results: The propensity score model matched 196 patients from the whole cohort. Neoadjuvant radiation was an independent predictor of CSS no matter before or after PSM. After PSM, the 1-, 3-, 5-year CSS rates of NRR group were 82.7%, 39.2% and 17.1%, while 64.3%, 19.9% and 12.4% for UR group. The median CSS for NRR group was 25 months, while 17 months for UR group. In subgroup analyses, CSS rates or median CSS of NRR group were still superior to those of UR group in married, unmarried, pancreatic adenocarcinoma, G1+G2, G3+G4, N0 stage, N1 stage and M0 stage subgroups, but no differences were found in other histological types and M1 stage subgroups. Other predictors of CSS included histological type, tumor grade and marital status. Conclusions: Neoadjuvant radiation followed by resection has a significant survival benefit compared with upfront resection in LAPC patients. Therapeutic strategy for LAPC patients should be further explored.
The ''postmitotic'' phenotype in adult cardiac muscle exhibits similarities to replicative senescence more generally and constitutes a barrier to effective restorative growth in heart disease. Telomere dysfunction is implicated in senescence and apoptotic signaling but its potential role in heart disorders is unknown. Here, we report that cardiac apoptosis in human heart failure is associated specifically with defective expression of the telomere repeatbinding factor TRF2, telomere shortening, and activation of the DNA damage checkpoint kinase, Chk2. In cultured cardiomyocytes, interference with either TRF2 function or expression triggered telomere erosion and apoptosis, indicating that cell death can occur via this pathway even in postmitotic, noncycling cells; conversely, exogenous TRF2 conferred protection from oxidative stress. In vivo, mechanical stress was sufficient to down-regulate TRF2, shorten telomeres, and activate Chk2 in mouse myocardium, and transgenic expression of telomerase reverse transcriptase conferred protection from all three responses. Together, these data suggest that apoptosis in chronic heart failure is mediated in part by telomere dysfunction and suggest an essential role for TRF2 even in postmitotic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.