Nondetection of a species at a site does not imply that the species is absent unless the probability of detection is 1. We propose a model and likelihood-based method for estimating site occupancy rates when detection probabilities are 1. The model provides a flexible framework enabling covariate information to be included and allowing for missing observations. Via computer simulation, we found that the model provides good estimates of the occupancy rates, generally unbiased for moderate detection probabilities (0.3). We estimated site occupancy rates for two anuran species at 32 wetland sites in Maryland, USA, from data collected during 2000 as part of an amphibian monitoring program, Frog-watch USA. Site occupancy rates were estimated as 0.49 for American toads (Bufo amer-icanus), a 44% increase over the proportion of sites at which they were actually observed, and as 0.85 for spring peepers (Pseudacris crucifer), slightly above the observed proportion of 0.83.
Abstract. Nondetection of a species at a site does not imply that the species is absent unless the probability of detection is 1. We propose a model and likelihood-based method for estimating site occupancy rates when detection probabilities are Ͻ1. The model provides a flexible framework enabling covariate information to be included and allowing for missing observations. Via computer simulation, we found that the model provides good estimates of the occupancy rates, generally unbiased for moderate detection probabilities (Ͼ0.3). We estimated site occupancy rates for two anuran species at 32 wetland sites in Maryland, USA, from data collected during 2000 as part of an amphibian monitoring program, Frogwatch USA. Site occupancy rates were estimated as 0.49 for American toads (Bufo americanus), a 44% increase over the proportion of sites at which they were actually observed, and as 0.85 for spring peepers (Pseudacris crucifer), slightly above the observed proportion of 0.83.
Using data from the North American Breeding Bird Survey, we determined that most neotropical migrant bird species that breed in forests of the eastern United States and Canada have recently (1978)(1979)(1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987) declined in abundance after a period of stable or increasing populations. Most permanent residents and temperate-zone migrants did not show a general pattern of decrease during this period. Field data from Mexico were used to classify a subset of the neotropical migrants as using forest or scrub habitats during winter. Population declines during 1978-1987 were significantly greater among the forest-wintering species, while populations of scrubwintering species increased. The same subset of neotropical migrants also showed overall declines in forest-breeding species, but no significant differences existed between species breeding in forest and scrub habitats. Neotropical migrant species that primarily use forested habitats in either wintering or breeding areas are declining, but a statistically significant association between habitat and population declines was detected only in the tropics.
This volume contains in part papers presented at the Symposium on Monitoring Bird Population Trends by Point Counts, which was held November 6-7, 1991, in Beltsville, Md., in response to the need for standardization of methods to monitor bird populations by point counts. Data from various investigators working under a wide variety of conditions are presented, and various aspects of point count methodology are examined. Point counts of birds are the most widely used quantitative method and involve an observer recording birds from a single point for a standardized time period. Statistical aspects of sampling and analysis were discussed and applied to the objectives of point counts. Symposium participants agreed upon standards of point counts that should have wide applicability to a variety of habitats and terrain.
Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines. We used data from 11 multiyear studies of bee communities to devise a program to monitor pollinators at regional, national, or international scales. In these studies, 7 different methods for sampling bees were used and bees were sampled on 3 different continents. We estimated that a monitoring program with 200-250 sampling locations each sampled twice over 5 years would provide sufficient power to detect small (2-5%) annual declines in the number of species and in total abundance and would cost U.S.$2,000,000. To detect declines as small as 1% annually over the same period would require >300 sampling locations. Given the role of pollinators in food security and ecosystem function, we recommend establishment of integrated regional and international monitoring programs to detect changes in pollinator communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.