Measurements of early tumor responses to therapy have been shown, in some cases, to predict treatment outcome. We show in lymphoma-bearing mice injected intravenously with hyperpolarized [1-(13)C]pyruvate that the lactate dehydrogenase-catalyzed flux of (13)C label between the carboxyl groups of pyruvate and lactate in the tumor can be measured using (13)C magnetic resonance spectroscopy and spectroscopic imaging, and that this flux is inhibited within 24 h of chemotherapy. The reduction in the measured flux after drug treatment and the induction of tumor cell death can be explained by loss of the coenzyme NAD(H) and decreases in concentrations of lactate and enzyme in the tumors. The technique could provide a new way to assess tumor responses to treatment in the clinic.
As alterations in tissue pH underlie many pathological processes, the capability to image tissue pH in the clinic could offer new ways of detecting disease and response to treatment. Dynamic nuclear polarization is an emerging technique for substantially increasing the sensitivity of magnetic resonance imaging experiments. Here we show that tissue pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H(13)CO(3)(-)) and (13)CO(2) following intravenous injection of hyperpolarized H(13)CO(3)(-). The technique was demonstrated in a mouse tumour model, which showed that the average tumour interstitial pH was significantly lower than the surrounding tissue. Given that bicarbonate is an endogenous molecule that can be infused in relatively high concentrations into patients, we propose that this technique could be used clinically to image pathological processes that are associated with alterations in tissue pH, such as cancer, ischaemia and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.