SUMMARY
Responses of neurons in early visual cortex change little with training, and appear insufficient to account for perceptual learning. Behavioral performance, however, relies on population activity, and the accuracy of a population code is constrained by correlated noise among neurons. We tested whether training changes interneuronal correlations in the dorsal medial superior temporal area, which is involved in multisensory heading perception. Pairs of single units were recorded simultaneously in two groups of subjects: animals trained extensively in a heading discrimination task, and “naïve” animals that performed a passive fixation task. Correlated noise was significantly weaker in trained versus naïve animals, which might be expected to improve coding efficiency. However, we show that the observed uniform reduction in noise correlations leads to little change in population coding efficiency when all neurons are decoded. Thus, global changes in correlated noise among sensory neurons may be insufficient to account for perceptual learning.
The loss of motor control severely impedes activities of daily life. Brain computer interfaces (BCIs) offer new possibilities to treat nervous system injuries, but conventional BCIs use signals from primary motor cortex, the same sites most likely damaged in a stroke causing paralysis. Recent studies found distinct cortical physiology associated with contralesional limb movements in regions distinct from primary motor cortex. To capitalize on these findings, we designed and implemented a BCI that localizes and acquires these brain signals to drive a powered, hand orthotic which opens and closes a patient's hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.