The open-source Computational Proteomics Analysis System (CPAS) contains an entire data analysis and management pipeline for Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) proteomics, including experiment annotation, protein database searching and sequence management, and mining LC-MS/MS peptide and protein identifications. CPAS architecture and features, such as a general experiment annotation component, installation software, and data security management, make it useful for collaborative projects across geographical locations and for proteomics laboratories without substantial computational support.
There is evidence that 8q amplification is associated with poor prognosis in hepatoblastoma. A previous comparative genomic hybridization analysis identified a critical region in chromosomal bands 8q11.2-q13. Using restriction landmark genomic scanning in combination with a virtual genome scan, we showed that this region is delineated by sequences within contig NT_008183 of chromosomal subbands 8q11.22-q11.23. A real-time PCR-based genomic copy number assay of 20 hepatoblastomas revealed gain or amplification in this critical chromosomal region in eight tumors. The expression of four genes and expressed sequence tags (ESTs) within this newly defined region was assayed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in four tumors with and six tumors without gain or amplification. The PLAG1 oncogene was found to be highly expressed in all but one tumor compared to normal liver tissue. Furthermore, quantitative RT-PCR revealed that the expression level of the developmentally regulated transcription factor PLAG1 was 3-12 times greater in hepatoblastoma tumors and cell lines compared to age-matched normal liver and comparable to the expression in fetal liver tissue. PLAG1 has been shown be a transcriptional activator of IGF2 in other tumor types. Using luciferase reporter assays, we demonstrated that PLAG1 transactivates transcription from the embryonic IGF2 promoter P3, also in hepatoblastoma cell lines. Thus, our results provide evidence that PLAG1 overexpression may be responsible for the frequently observed up-regulation of IGF2 in hepatoblastoma and therefore may be implicated in the molecular pathogenesis of this childhood neoplasia.
T-cell-based immunotherapies are promising treatments for cancer patients. Although durable responses can be achieved in some patients, many patients fail to respond to these therapies, underscoring the need for improvement with combination therapies. From a screen of 850 bioactive compounds, we identify HSP90 inhibitors as candidates for combination with immunotherapy. We show that inhibition of HSP90 with ganetespib enhances T-cell-mediated killing of patient-derived human melanoma cells by their autologous T cells in vitro and potentiates responses to anti-CTLA4 and anti-PD1 therapy in vivo. Mechanistic studies reveal that HSP90 inhibition results in upregulation of interferon response genes, which are essential for the enhanced killing of ganetespib treated melanoma cells by T cells. Taken together, these findings provide evidence that HSP90 inhibition can potentiate T-cell-mediated anti-tumor immune responses, and rationale to explore the combination of immunotherapy and HSP90 inhibitors.
Early detection is critical in cancer control and prevention. Biomarkers help in this process by providing valuable information about a the status of a cell at any given point in time. As a cell transforms from nondiseased to neoplastic, distinct changes occur that could be potentially detected through the identification of the appropriate biomarkers. Biomarker research has benefited from advances in technology such as proteomics. We discuss here ongoing research in this field, focusing on proteomic technologies. The advances in two-dimensional electrophoresis and mass spectrometry are discussed in light of their contribution to biomarker research. Chip-based techniques, such as surface-enhanced laser desorption, and ionization and emerging methods, such as tissue and antibody arrays, are also discussed. The development of bioinformatic tools that have and are being developed in parallel to proteomics is also addressed. This report brings into focus the efforts of the Early Detection Research Network at the National Cancer Institute in harnessing scientific expertise from leading institutions to identify and validate biomarkers for early detection and risk assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.