Adaptive tracking-by-detection methods are widely used in computer vision for tracking arbitrary objects. Current approaches treat the tracking problem as a classification task and use online learning techniques to update the object model. However, for these updates to happen one needs to convert the estimated object position into a set of labelled training examples, and it is not clear how best to perform this intermediate step. Furthermore, the objective for the classifier (label prediction) is not explicitly coupled to the objective for the tracker (accurate estimation of object position). In this paper, we present a framework for adaptive visual object tracking based on structured output prediction. By explicitly allowing the output space to express the needs of the tracker, we are able to avoid the need for an intermediate classification step. Our method uses a kernelized structured output support vector machine (SVM), which is learned online to provide adaptive tracking. To allow for real-time application, we introduce a budgeting mechanism which prevents the unbounded growth in the number of support vectors which would otherwise occur during tracking. Experimentally, we show that our algorithm is able to outperform state-of-the-art trackers on various benchmark videos. Additionally, we show that we can easily incorporate additional features and kernels into our framework, which results in increased performance.
The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are presented. The number of tested trackers makes VOT 2014 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2014 challenge that go beyond its VOT2013 predecessor are introduced: (i) a new VOT2014 dataset with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2013 evaluation methodology, (iii) a new unit for tracking speed assessment less dependent on the hardware and (iv) the VOT2014 evaluation toolkit that significantly speeds up execution of experiments. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net)
Adaptive tracking-by-detection methods are widely used in computer vision for tracking arbitrary objects. Current approaches treat the tracking problem as a classification task and use online learning techniques to update the object model. However, for these updates to happen one needs to convert the estimated object position into a set of labelled training examples, and it is not clear how best to perform this intermediate step. Furthermore, the objective for the classifier (label prediction) is not explicitly coupled to the objective for the tracker (estimation of object position). In this paper, we present a framework for adaptive visual object tracking based on structured output prediction. By explicitly allowing the output space to express the needs of the tracker, we avoid the need for an intermediate classification step. Our method uses a kernelised structured output support vector machine (SVM), which is learned online to provide adaptive tracking. To allow our tracker to run at high frame rates, we (a) introduce a budgeting mechanism that prevents the unbounded growth in the number of support vectors that would otherwise occur during tracking, and (b) show how to implement tracking on the GPU. Experimentally, we show that our algorithm is able to outperform state-of-the-art trackers on various benchmark videos. Additionally, we show that we can easily incorporate additional features and kernels into our framework, which results in increased tracking performance.
Efficient keypoint-based object detection methods are used in many real-time computer vision applications. These approaches often model an object as a collection of keypoints and associated descriptors, and detection then involves first constructing a set of correspondences between object and image keypoints via descriptor matching, and subsequently using these correspondences as input to a robust geometric estimation algorithm such as RANSAC to find the transformation of the object in the image. In such approaches, the object model is generally constructed offline, and does not adapt to a given environment at runtime. Furthermore, the feature matching and transformation estimation stages are treated entirely separately. In this paper, we introduce a new approach to address these problems by combining the overall pipeline of correspondence generation and transformation estimation into a single structured output learning framework.Following the recent trend of using efficient binary descriptors for feature matching, we also introduce an approach to approximate the learned object model as a collection of binary basis functions which can be evaluated very efficiently at runtime. Experiments on challenging video sequences show that our algorithm significantly improves over state-of-the-art descriptor matching techniques using a range of descriptors, as well as recent online learning based approaches.
To establish a novel SARS-CoV-2 human challenge model, 36 volunteers aged 18-29 years without evidence of previous infection or vaccination were inoculated with 10 TCID50 of a wild-type virus (SARS-CoV-2/human/GBR/484861/2020) intranasally. Two participants were excluded from per protocol analysis due to seroconversion between screening and inoculation. Eighteen (~53%) became infected, with viral load (VL) rising steeply and peaking at ~5 days post-inoculation. Virus was first detected in the throat but rose to significantly higher levels in the nose, peaking at ~8.87 log10 copies/ml (median, 95% CI [8.41,9.53). Viable virus was recoverable from the nose up to ~10 days post-inoculation, on average. There were no serious adverse events. Mild-to-moderate symptoms were reported by 16 (89%) infected individuals, beginning 2-4 days post-inoculation. Anosmia/dysosmia developed more gradually in 12 (67%) participants. No quantitative correlation was noted between VL and symptoms, with high VLs even in asymptomatic infection, followed by the development of serum spike-specific and neutralising antibodies. However, lateral flow results were strongly associated with viable virus and modelling showed that twice-weekly rapid tests could diagnose infection before 70-80% of viable virus had been generated. Thus, in this first SARS-CoV-2 human challenge study, no serious safety signals were detected and the detailed characteristics of early infection and their public health implications were shown. ClinicalTrials.gov identifier: NCT04865237.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.