In an attempt to advance the understanding of the Earth's weather and climate by representing deep convection explicitly, we present a global, four-month simulation (November 2018 to February 2019) with ECMWF's hydrostatic Integrated Forecasting System (IFS) at an average grid spacing of 1.4 km. The impact of explicitly simulating deep convection on the atmospheric circulation and its variability is assessed by comparing the 1.4 km simulation to the equivalent well-tested and calibrated global simulations at 9 km grid spacing with and without parametrized deep convection. The explicit simulation of deep convection at 1.4 km results in a realistic large-scale circulation, better representation of convective storm activity, and stronger convective gravity wave activity when compared to the 9 km simulation with parametrized deep convection. Comparison of the 1.4 km simulation to the 9 km simulation without parametrized deep convection shows that switching off deep convection parametrization at a too coarse resolution (i.e., 9 km) generates too strong convective gravity waves. Based on the limited statistics available, improvements to the Madden-Julian Oscillation or tropical precipitation are not observed at 1.4 km, suggesting that other Earth system model components and/or their interaction are important for an accurate representation of these processes and may well need adjusting at deep convection resolving resolutions. Overall, the good agreement of the 1.4 km simulation with the 9 km simulation with parametrized deep convection is remarkable, despite one of the most fundamental parametrizations being turned off at 1.4 km resolution and despite no adjustments being made to the remaining parametrizations. Plain Language Summary We present the world's first global simulation of an entire season of the Earth's atmosphere with 1.4 km average grid spacing and the top of the modeled atmosphere as high as 80 km. Albeit only a single realization due to its considerable computational cost, the resulting model output provides a reference and guidance for future simulations. For illustration we compare to simulations at 9 km grid spacing that represent the state of the art in numerical weather prediction and are still considerably finer when compared to models that are used for climate projections today. Thanks to its unprecedented detail, the simulation output will support future model development and satellite mission planning and may be seen as a prototype contribution to a future digital twin of our Earth.
We assess the value of machine learning as an accelerator for the parameterisation schemes of operational weather forecasting systems, specifically the parameterisation of non-orographic gravity wave drag. Emulators of this scheme can be trained to produce stable and accurate results up to seasonal forecasting timescales. Generally, more complex networks produce more accurate emulators. By training on an increased complexity version of the existing parameterisation scheme we build emulators that produce more accurate forecasts. For medium range forecasting we find evidence our emulators are more accurate than the version of the parametrisation scheme that is used for operational predictions.Using the current operational CPU hardware our emulators have a similar computational cost to the existing scheme, but are heavily limited by data movement. On GPU hardware our emulators perform ten times faster than the existing scheme on a CPU.
A new approach for improving the accuracy of data assimilation, by trading numerical precision for ensemble size, is introduced. Data assimilation is inherently uncertain because of the use of noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower-precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, computational resources can be redistributed toward, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localization, lowering precision could actually permit an improvement in the accuracy of weather forecasts. Here, this idea is tested on an ensemble data assimilation system comprising the Lorenz ’96 toy atmospheric model and the ensemble square root filter. The system is run at double-, single-, and half-precision (the latter using an emulation tool), and the performance of each precision is measured through mean error statistics and rank histograms. The sensitivity of these results to the observation error and the length of the observation window are addressed. Then, by reinvesting the saved computational resources from reducing precision into the ensemble size, assimilation error can be reduced for (hypothetically) no extra cost. This results in increased forecasting skill, with respect to double-precision assimilation.
The next generation of weather and climate models will have an unprecedented level of resolution and model complexity, and running these models efficiently will require taking advantage of future supercomputers and heterogeneous hardware. In this paper, we investigate the use of mixed-precision hardware that supports floating-point operations at double-, single-and half-precision. In particular, we investigate the potential use of the NVIDIA Tensor Core, a mixed-precision matrix-matrix multiplier mainly developed for use in deep learning, to accelerate the calculation of the Legendre transforms in the Integrated Forecasting System (IFS), one of the leading global weather forecast models. In the IFS, the Legendre transform is one of the most expensive model components and dominates the computational cost for simulations at a very high resolution. We investigate the impact of mixed-precision arithmetic in IFS simulations of operational complexity through software emulation. Through a targeted but minimal use of double-precision arithmetic we are able to use either half-precision arithmetic or mixed half/single-precision arithmetic for almost all of the calculations in the Legendre transform without affecting forecast skill. CCS CONCEPTS • Applied computing → Earth and atmospheric sciences.
We assess the ability of neural network emulators of physical parametrization schemes in numerical weather prediction models to aid in the construction of linearized models required by four‐dimensional variational (4D‐Var) data assimilation. Neural networks can be differentiated trivially, and so if a physical parametrization scheme can be accurately emulated by a neural network then its tangent‐linear and adjoint versions can be obtained with minimal effort, compared with the standard paradigms of manual or automatic differentiation of the model code. Here we apply this idea by emulating the non‐orographic gravity wave drag parametrization scheme in an atmospheric model with a neural network, and deriving its tangent‐linear and adjoint models. We demonstrate that these neural network‐derived tangent‐linear and adjoint models not only pass the standard consistency tests but also can be used successfully to do 4D‐Var data assimilation. This technique holds the promise of significantly easing maintenance of tangent‐linear and adjoint codes in weather forecasting centers, if accurate neural network emulators can be constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.