Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides1. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle2–3. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria4–5, with substrates including the notorious polychlorinated biphenyls (PCBs) or dioxins6–7. These proteins form a distinct subfamily of cobalamin (B12) dependent enzymes that are usually membrane-associated and oxygen-sensitive, hindering detailed studies8–12. We report the characterisation of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carbon-Co bond chemistry catalyzed by the other cobalamin-dependent subfamilies13 we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogen-Co bond formation. This presents a new paradigm in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.
The ubiD/ubiX or the homologous fdc/pad genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone biosynthesis1–3 or microbial biodegradation of aromatic compounds4–6 respectively. Despite biochemical studies on individual gene products, the composition and co-factor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear7–9. We show Fdc is solely responsible for (de)carboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesised by the associated UbiX/Pad10. Atomic resolution crystal structures reveal two distinct isomers of the oxidized cofactor can be observed: an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with drastically altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. While 1,3-dipolar cycloaddition is commonly used in organic chemistry11–12, we propose this presents the first example of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation.
Fast motions (femtosecond to picosecond) and their potential involvement during enzyme-catalysed reactions have ignited considerable interest in recent years. Their influence on reaction chemistry has been inferred indirectly from studies of the anomalous temperature dependence of kinetic isotope effects and computational simulations. But can such motion reduce the width and height of energy barriers along the reaction coordinate, and contribute to quantum mechanical and/or classical nuclear-transfer chemistry? Here we discuss contemporary ideas for enzymatic reactions invoking a role for fast 'promoting' (or 'compressive') motions that, in principle, can aid hydrogen-transfer reactions. Of key importance is the direct demonstration of a role for compressive motions and the ability to understand in atomic detail the structural origin of these fast motions, but so far this has not been achieved. Here we discuss both indirect experimental evidence that supports a role for compressive motion and the additional insight gained from computational simulations.
Use of the pressure dependence of kinetic isotope effects, coupled with a study of their temperature dependence, as a probe for promoting motions in enzymatic hydrogen-tunneling reactions is reported. Employing morphinone reductase as our model system and by using stopped-flow methods, we measured the hydride transfer rate (a tunneling reaction) as a function of hydrostatic pressure and temperature. Increasing the pressure from 1 bar (1 bar ؍ 100 kPa) to 2 kbar accelerates the hydride transfer reaction when both protium (from 50 to 161 s ؊1 at 25°C) and deuterium (12 to 31 s ؊1 at 25°C) are transferred. We found that the observed primary kinetic isotope effect increases with pressure (from 4.0 to 5.2 at 25°C), an observation incompatible with the Bell correction model for hydrogen tunneling but consistent with a full tunneling model. By numerical modeling, we show that both the pressure and temperature dependencies of the reaction rates are consistent with the framework of the environmentally coupled tunneling model of Kuznetsov and Ulstrup [Kuznetsov AM, Ulstrup J (1999) Can J Chem 77:1085-1096], providing additional support for the role of a promoting motion in the hydride tunneling reaction in morphinone reductase. Our study demonstrates the utility of ''barrier engineering'' by using hydrostatic pressure as a probe for tunneling regimes in enzyme systems and provides added and independent support for the requirement of promoting motions in such tunneling reactions.flavoprotein ͉ hydrogen tunneling ͉ morphinone reductase ͉ pressure dependence ͉ stopped flow E nzymes are efficient catalysts that can achieve rate enhancements of up to 10 21 over the uncatalyzed reaction rate (1). Our quest to understand the physical basis of this catalytic power, which is pivotal to our understanding of biological reactions and our exploitation of enzymes in chemical, biomedical, and biotechnological processes, is challenging and has involved sustained and intensive research efforts for Ͼ100 years (for reviews see, e.g., refs. 2-6). Recent experimental studies employing the temperature dependence of kinetic isotope effects (KIEs) have emphasized the role of quantum mechanical tunneling in enzymatic hydrogen-transfer (H-transfer) reactions (7-18). These data, which can be explained neither by conventional transition state theory (TST) nor by the Bell tunneling correction to TST (19), are in agreement with environmentally coupled models of hydrogen tunneling (H-tunneling) (12,20,21) and can be simulated computationally (22-30) within the framework of modern TST (31). In the Kuznetsov and Ulstrup environmentally coupled model of H-tunneling (20), as used quantitatively by Klinman and coworkers (32), temperatureindependent KIEs arise from Marcus-like (33) vibrations (collective thermally equilibrated motions) that lead to degenerate reactant and product states, whereas temperature-dependent KIEs arise from ''gating motions'' (motion along the reaction coordinate) that enhance the probability of tunneling at this configuration by ...
The enzyme protochlorophyllide oxidoreductase (POR) catalyses a lightdependent step in chlorophyll biosynthesis that is essential to photosynthesis and ultimately all life on Earth. 1-3 POR, which is one of three known light-dependent enzymes, 4,5 catalyzes reduction of the photosensitizer and substrate protochlorophyllide to form the pigment chlorophyllide. Despite its biological importance, a structural basis for POR photocatalysis has remained elusive. Here, we report crystal structures of cyanobacterial PORs from Thermosynechococcus elongatus and Synechocystis sp. in their free forms, and in complex with nicotinamide coenzyme. Our structural models and simulations of the ternary protochlorophyllide-NADPH-POR complex have identified multiple interactions in the POR active site that are important for protochlorophyllide binding, photosensitization and photochemical conversion to chlorophyllide. We demonstrate the importance of active-site architecture and protochlorophyllide structure in experiments using POR variants and protochlorophyllide analogues. These studies reveal how the POR active site facilitates light-driven reduction of protochlorophyllide by localized hydride transfer from NADPH and long-range proton transfer along structurally defined proton-transfer pathways. As the light-driven step in the chlorophyll biosynthetic pathway (Fig. 1), the POR reaction acts as the trigger for the germination of seedlings =in plants and provokes a marked change in the morphological development of the plant. 2,3 Given this crucial biological role, POR has been the focus of numerous mechanistic and biophysical investigations. A combination of time-resolved (at the femtosecond-to-second scale) and cryogenic spectroscopy methods have provided some understanding of the mechanism of POR photocatalysis in a range of photosynthetic organisms, including cyanobacteria and plants. Picosecond excited-state dynamics in the protochlorophyllide (Pchlide) molecule are thought to result in excited state interactions between the substrate and active-site residues that are necessary to trigger the subsequent reaction chemistry. 6-12 This involves sequential transfer of a hydride equivalent from NADPH and a proton transfer from either an active site residue or solvent. Proton transfer is reliant on solvent dynamics and an implied network of extended protein motions that occur on the microsecond timescale. 13-17 Hydride transfer from NADPH is not concerted, but occurs in a stepwise manner that involves
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.