Objective This article summarizes the preparation, organization, evaluation, and results of Track 2 of the 2018 National NLP Clinical Challenges shared task. Track 2 focused on extraction of adverse drug events (ADEs) from clinical records and evaluated 3 tasks: concept extraction, relation classification, and end-to-end systems. We perform an analysis of the results to identify the state of the art in these tasks, learn from it, and build on it. Materials and Methods For all tasks, teams were given raw text of narrative discharge summaries, and in all the tasks, participants proposed deep learning–based methods with hand-designed features. In the concept extraction task, participants used sequence labelling models (bidirectional long short-term memory being the most popular), whereas in the relation classification task, they also experimented with instance-based classifiers (namely support vector machines and rules). Ensemble methods were also popular. Results A total of 28 teams participated in task 1, with 21 teams in tasks 2 and 3. The best performing systems set a high performance bar with F1 scores of 0.9418 for concept extraction, 0.9630 for relation classification, and 0.8905 for end-to-end. However, the results were much lower for concepts and relations of Reasons and ADEs. These were often missed because local context is insufficient to identify them. Conclusions This challenge shows that clinical concept extraction and relation classification systems have a high performance for many concept types, but significant improvement is still required for ADEs and Reasons. Incorporating the larger context or outside knowledge will likely improve the performance of future systems.
Background Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. Objective Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. Methods We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. Results Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of r=.9010, r=.8967, and r=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. Conclusions The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.
Objective Track 1 of the 2018 National NLP Clinical Challenges shared tasks focused on identifying which patients in a corpus of longitudinal medical records meet and do not meet identified selection criteria. Materials and Methods To address this challenge, we annotated American English clinical narratives for 288 patients according to whether they met these criteria. We chose criteria from existing clinical trials that represented a variety of natural language processing tasks, including concept extraction, temporal reasoning, and inference. Results A total of 47 teams participated in this shared task, with 224 participants in total. The participants represented 18 countries, and the teams submitted 109 total system outputs. The best-performing system achieved a micro F1 score of 0.91 using a rule-based approach. The top 10 teams used rule-based and hybrid systems to approach the problems. Discussion Clinical narratives are open to interpretation, particularly in cases where the selection criterion may be underspecified. This leaves room for annotators to use domain knowledge and intuition in selecting patients, which may lead to error in system outputs. However, teams who consulted medical professionals while building their systems were more likely to have high recall for patients, which is preferable for patient selection systems. Conclusions There is not yet a 1-size-fits-all solution for natural language processing systems approaching this task. Future research in this area can look to examining criteria requiring even more complex inferences, temporal reasoning, and domain knowledge.
Background As a risk factor for many diseases, family history (FH) captures both shared genetic variations and living environments among family members. Though there are several systems focusing on FH extraction using natural language processing (NLP) techniques, the evaluation protocol of such systems has not been standardized. Objective The n2c2/OHNLP (National NLP Clinical Challenges/Open Health Natural Language Processing) 2019 FH extraction task aims to encourage the community efforts on a standard evaluation and system development on FH extraction from synthetic clinical narratives. Methods We organized the first BioCreative/OHNLP FH extraction shared task in 2018. We continued the shared task in 2019 in collaboration with the n2c2 and OHNLP consortium, and organized the 2019 n2c2/OHNLP FH extraction track. The shared task comprises 2 subtasks. Subtask 1 focuses on identifying family member entities and clinical observations (diseases), and subtask 2 expects the association of the living status, side of the family, and clinical observations with family members to be extracted. Subtask 2 is an end-to-end task which is based on the result of subtask 1. We manually curated the first deidentified clinical narrative from FH sections of clinical notes at Mayo Clinic Rochester, the content of which is highly relevant to patients’ FH. Results A total of 17 teams from all over the world participated in the n2c2/OHNLP FH extraction shared task, where 38 runs were submitted for subtask 1 and 21 runs were submitted for subtask 2. For subtask 1, the top 3 runs were generated by Harbin Institute of Technology, ezDI, Inc., and The Medical University of South Carolina with F1 scores of 0.8745, 0.8225, and 0.8130, respectively. For subtask 2, the top 3 runs were from Harbin Institute of Technology, ezDI, Inc., and University of Florida with F1 scores of 0.681, 0.6586, and 0.6544, respectively. The workshop was held in conjunction with the AMIA 2019 Fall Symposium. Conclusions A wide variety of methods were used by different teams in both tasks, such as Bidirectional Encoder Representations from Transformers, convolutional neural network, bidirectional long short-term memory, conditional random field, support vector machine, and rule-based strategies. System performances show that relation extraction from FH is a more challenging task when compared to entity identification task.
Abstract-In this paper we propose a probabilistic classification algorithm with a novel Dynamic Time Warping (DTW) kernel to automatically recognize flight calls of different species of birds. The performance of the method on a real world dataset of warbler (Parulidae) flight calls is competitive to human expert recognition levels and outperforms other classifiers trained on a variety of feature extraction approaches. In addition we offer a novel and intuitive DTW kernel formulation which is positive semi-definite in contrast with previous work. Finally we obtain promising results with a larger dataset of multiple species that we can handle efficiently due to the explicit multiclass probit likelihood of the proposed approach 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.