Electro-ribbon actuators are high-performance electrically-driven artificial muscles with high flexibility, low mass, low power consumption, high contraction, and high force-to-weight ratio. They show great promise for driving the deployment of compact folding structures. This article presents the electro-lattice actuator (ELA), a compliant, three-dimensional, free-standing lattice structure that uses this phenomenon to contract to a flat sheet upon the application of a potential difference. The ELA was designed in the form of multiple interconnected buckled structures and fabricated using polyvinyl chloride sheets and tape and copper electrodes. The ELA structure was pre-set into an open-cell configuration by annealing in an oven. Isometric testing at varying compressions showed that the tensile stress of the proposed lattice actuator reaches a maximum of 184 Pa (a 472 Pa change in tensile stress compared with its unactuated state). A cuboid shaped ELA (13.6 cm length × 10.0 cm width × 5.4 cm height) achieved a contraction of 92.6% and a contraction rate of 35.6% s−1. The novel ELA opens up the use of electro-ribbon actuation to more complex and more effective 3D actuating and deploying structures.
Upper limb impairments and weakness are common post-stroke and with advanced aging. Rigid exoskeletons have been developed as a potential solution, but have had limited impact. In addition to user concerns about safety, their weight and appearance, the rigid attachment and typical anchoring methods can result in skin damage. In this paper, we present a soft, fabric-based pneumatic sleeve, which can shrink from a loose fit to a tight fit in order to anchor to the limbs temporarily, thereby enabling the application of mechanical assistance only when needed. The sleeve is comfortable, ergonomic and can be embedded unobtrusively with clothing. A mathematical model is built to simulate and design sleeves with different geometric parameters. The best sleeve was capable of generating a friction force of 98 N on the limb when inflated to 25 kPa. This sleeve was used to create a wearable assistive device, integrated with a cable-driven actuator. This device was able to lift a 1.44 kg forearm rig up to 95 degree at low pressure of 20 kPa. The device was tested with six healthy participants, in terms of fit, comfort and assistive functionality. The average acceptable sleeve pressure was found to be 33±4.7 kPa. All participants liked the appearance of the sleeve, with a high average perceived assistance score of 7.33±1.6 (out of 10). The shrink-to-fit sleeve is expected to significantly increase the development and adoption of soft robotic assistive devices and emerging powered clothing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.