This paper concerns human factors that might impact the success of future maritime defense operations. In such operations, extensive networking is likely to allow large amounts of information to be shared between headquarters, ships, submarines and aircraft. Military planners anticipate that this will enhance situation awareness for their forces. Researchers at Australia's Defence Science and Technology Organisation are studying this issue using a synthetic environment (a game play simulation involving a manned virtual submarine operating within a computer generated scenario). The initial focus of this work has been to identify appropriate metrics with which to monitor performance. Here we present an attempt to employ objective situation awareness metrics. Despite some technical problems, a number of interesting findings suggest that there may be a trade off between the accuracy of operator understanding and the size of the field of view of networked sensors.
Graphic representations of uncertainty have been found to be a superior method of visualizing uncertainty in aviation and maritime operations. The primary aim of the present research was to examine the extent to which various uncertainty ellipse representations (50%, 75%, 95%, and 99%) affected decision making performance when participants were asked to judge the proximities of two or three targets to an own-ship position. The research comprised two separate studies, with 300 trials in each. Each trial required participants to utilize an uncertainty ellipse surrounding each of the targets in order to determine the closest target to the own-ship. Decision making performance was assessed via target decision accuracy analyses, reaction time analyses and the discrepancy between participants' associated probability estimate and the ground truth. The impact of feedback on the accuracy of participants' judgments was also examined in Study 2. The implications of the findings to naval systems, as well as directions for future research, are proposed.
How team cognition is conceptualized has evolved rapidly in the last decade with the emerging use of a systems approach, moving the focus from the cognition residing in the heads of individuals, to that distributed across the team. This is referred to as ‘distributed cognition’. Increasingly, network approaches are being explored in attempts to model team distributed cognition. The specific domain of interest in the present study is the sociotechnical system within a maritime control room. This comprises human, machine and software agents interacting to interpret sensor data in order to develop a timely and accurate picture of surrounding contacts at sea. To achieve the goal, information is shared or integrated across the maritime control room consoles. The aim of this study was to develop and apply a suite of workload, situation awareness and team performance measures, including network analysis techniques, to examine how the distributed cognition of a team might change as a function of console configuration and information integration within a control room, and how these changes, if any, impact overall team performance. Sixteen teams of six novices conducted two one-hour scenarios operating generic maritime control room positions. Each team completed a one-hour simulation in each of two console configuration layouts with the order counter-balanced (within-subject design). Half the teams conducted the two scenarios in a high integration condition, and half in a low integration condition (between-subjects). The human machine interface (HMI) designs for the high integration condition emerged from a series of task analyses and user-centered design workshops. The emergent cognitively –oriented HMI designs are based on the assumption that each console can freely share information with other consoles. To create an analogue of current, less-integrated, and more stove-piped systems, a low integration condition was created where not all information was shared across consoles, but instead was shared verbally by console operators. Contacts detected at sea were introduced into the simulation and the team’s task was to assess, report and derive a solution (location, course, and speed) for each detected contact. Individual situation awareness was measured through the Situation Present Assessment Method (SPAM) and individual workload through the Air Traffic Workload Indicator Task (ATWIT). Team interaction from the scenarios were video recorded and we applied the Event Analysis of Systemic Teamwork (EAST) approach to examine the task, social and information networks which emerged. Team performance was measured as the accuracy and timeliness of the solutions We found higher information integration lowered average team workload, and improved average team situation awareness and team performance (faster solutions and a more accurate tactical picture). We found no impact of console configuration on team performance or any other dependent measure. The EAST method uncovered patterns in the network analysis that are potentially explanatory for the team workload, situation awareness and performance findings as a function of the information integration manipulation. This experiment showed that there can be reductions in workload, and improvements to situation awareness and performance when information is shared between consoles in a considered design. This has implications for HMI design within a team setting. The set of diagnostic metrics developed were largely effective in examining teamwork and team performance. Acknowledgements. The authors would like to thank Justin Hill (Royal Australian Navy) for his subject matter expertise, Graeme Muller (elmTEK) for his software, technical and infrastructure support, David Munro-Ford (Total Technology Partners) for his simulation programming, Dr Aaron Roberts for his advice on general aspects of the experiment, and Professor Paul Salmon for his advice on EAST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.