Mitogen-activated protein (MAP) kinase kinase (MAPKK) activates MAP kinase in a signal transduction pathway that mediates cellular responses to growth and differentiation factors. Oncogenes such as ras, src, raf, and mos have been proposed to transform cells by prolonging the activated state of MAPKK and of components downstream in the signaling pathway. To test this hypothesis, constitutively active MAPKK mutants were designed that had basal activities up to 400 times greater than that of the unphosphorylated wild-type kinase. Expression of these mutants in mammalian cells activated AP-1-regulated transcription. The cells formed transformed foci, grew efficiently in soft agar, and were highly tumorigenic in nude mice. These findings indicate that constitutive activation of MAPKK is sufficient to promote cell transformation.
The activation of human mitogen-activated protein kinase kinase 1 (MKK1) is achieved by phosphorylation at Ser218 and Ser222 within a regulatory loop. Partial activation was achieved by replacing these residues with aspartic/glutamic acid. Higher activity was obtained by introducing four acidic residue substitutions in the regulatory loop, indicating that acidic residues in the loop stabilize an active configuration by the introduction of negative charge. Activation of MKK1 is also achieved by deleting residues 44-51, N-terminal to the consensus catalytic core. Although substitution of residues within this segment by alanine does not affect activity, introduction of proline residues elevates kinase activity, indicating that activation results from perturbation of secondary structure within residues 44-51. Pseudosubstrate inhibition, a commonly observed mechanism of kinase regulation, is not operative in this process. Both the acidic substitutions and the N-terminal deletion increase Vmax, V/K(m),ERK2, and V/K(m),ATP, as is also observed following phosphorylation of wild-type MKK1. A synergistic enhancement of these steady-state rate parameters occurs upon combining the mutations, suggesting that conformational changes induced by mutagenesis together mimic those seen upon phosphorylation.
The drug brefeldin A (BFA) disrupts protein traffic and Golgi morphology by blocking activation of ADP ribosylation factors (ARFs) through an unknown mechanism. Here, we investigated the cellular localization and BFA sensitivity of human p200 ARF-GEP1 (p200), a ubiquitously expressed guanine nucleotide exchange factor of the Sec7 domain family. Multiple tagged forms of the full-length polypeptide localized to tight ribbon-like perinuclear structures that overlapped with the Golgi marker mannosidase II and were distinct from the pattern observed with ERGIC53͞ 58. Analysis of several truncated forms mapped the Golgilocalization signal to the N-terminal third of p200. BFA treatment of transiently or stably transfected cells resulted in the redistribution of Golgi markers and in loss of cell viability, thereby indicating that overproduction of p200 may not be sufficient to overcome the toxic effect. A 39-kDa fragment spanning the Sec7 domain catalyzed loading of guanosine 5-[␥-thio]triphosphate onto class I ARFs and displayed clear sensitivity to BFA. Kinetic analysis established that BFA did not compete with ARF for interaction with p200 but, rather, acted as an uncompetitive inhibitor that only targeted the p200-ARF complex with an inhibition constant of 7 M. On the basis of these results, we propose that accumulation of an abortive p200-ARF complex in the presence of BFA likely leads to disruption of Golgi morphology. p200 mapped to chromosome 8q13, 3.56 centirays from WI-6151, and database searches revealed the presence of putative isoforms whose inhibition may account for the effects of BFA on various organelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.