Three independent line intercept transect surveys on northern Red Sea reef slopes conducted in 1988/9 and 1997/8 in Egypt and from 2006–9 in Saudi Arabia were used to compare community patterns and coral size. Coral communities showed scale-dependent variability, highest at fine spatial and taxonomic scale (species-specific within and among reef patterns). At coarser scale (generic pattern across regions), patterns were more uniform (regionally consistent generic dominance on differently exposed reef slopes and at different depths). Neither fine- nor coarse-scale patterns aligned along the sampled 1700 km latitudinal gradient. Thus, a latitudinal gradient that had been described earlier from comparable datasets, separating the Red Sea into three faunistic zones, was no longer apparent. This may indicate subtle changes in species distributions. Coral size, measured as corrected average intercept of corals in transects, had decreased from 1997 to 2009, after having remained constant from 1988 to 1997. Recruitment had remained stable (∼12 juvenile corals per m2). Size distributions had not changed significantly but large corals had declined over 20 years. Thus, data from a wide range of sites taken over two decades support claims by others that climate change is indeed beginning to show clear effects on Red Sea reefs.
Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.