Abstract. Links is a programming language for web applications that generates code for all three tiers of a web application from a single source, compiling into JavaScript to run on the client and into SQL to run on the database. Links supports rich clients running in what has been dubbed 'Ajax' style, and supports concurrent processes with statically-typed message passing. Links is scalable in the sense that session state is preserved in the client rather than the server, in contrast to other approaches such as Java Servlets or PLT Scheme. Client-side concurrency in JavaScript and transfer of computation between client and server are both supported by translation into continuation-passing style.
Plotkin and Pretnar's handlers for algebraic effects occupy a sweet spot in the design space of abstractions for effectful computation. By separating effect signatures from their implementation, algebraic effects provide a high degree of modularity, allowing programmers to express effectful programs independently of the concrete interpretation of their effects. A handler is an interpretation of the effects of an algebraic computation. The handler abstraction adapts well to multiple settings: pure or impure, strict or lazy, static types or dynamic types. This is a position paper whose main aim is to popularise the handler abstraction. We give a gentle introduction to its use, a collection of illustrative examples, and a straightforward operational semantics. We describe our Haskell implementation of handlers in detail, outline the ideas behind our OCaml, SML, and Racket implementations, and present experimental results comparing handlers with existing code.
Abstract. Session types provide a static guarantee that concurrent programs respect communication protocols. Recently, Caires, Pfenning, and Toninho, and Wadler, have developed a correspondence between propositions of linear logic and session typed π-calculus processes. We relate the cut-elimination semantics of this approach to an operational semantics for session-typed concurrency in a functional language. We begin by presenting a variant of Wadler's session-typed core functional language, GV. We give a small-step operational semantics for GV. We develop a suitable notion of deadlock, based on existing approaches for capturing deadlock in π-calculus, and show that all well-typed GV programs are deadlockfree, deterministic, and terminating. We relate GV to linear logic by giving translations between GV and CP, a process calculus with a type system and semantics based on classical linear logic. We prove that both directions of our translation preserve reduction; previous translations from GV to CP, in contrast, failed to preserve β-reduction. Furthermore, to demonstrate the modularity of our approach, we define two extensions of GV which preserve deadlock-freedom, determinism, and termination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.