ABSTRACTm am_184 12..34 1. Research on mating systems and reproductive strategies is valuable for providing ethological knowledge, important for the management and conservation of a species, and in a broader sense, important for biodiversity conservation. 2. We reviewed the literature to document the mating system of the brown bear Ursus arctos. We determined that many aspects of the reproduction of the brown bear remain unclear, including (i) biological aspects, such as hormone and oestrous cycling, sperm competition, mate choice, sexually selected infanticide, etc. and (ii) human impacts on the mating system, occurring when humans alter population size and structure, through, for example, hunting or habitat degradation. 3. We considered three mating system classification frameworks from the literature (Emlen & Oring 1977, Clutton-Brock 1989, Shuster & Wade 2003 and applied various brown bear populations to them. We did this (i) to document the plasticity of the mating system of the brown bear, and (ii) to find commonalities among the reported mating system classifications in order to provide a general and common classification of the brown bear's mating system. 4.The mating system of the brown bear can, in general, be classed as 'polygamous'. Subclassifications can nevertheless be valuable on smaller spatial scales. 5. Within the polygamous mating system of the brown bear, biological aspects and human impacts can influence reproductive strategies at the individual and population level. Mating system classification frameworks often lack a common terminology, which contributes to the variety of published classifications of the mating system of the brown bear.
Understanding a species' feeding ecology is essential for successful management and conservation, because food abundance can influence body mass, survival, reproductive success, movements, and habitat use. We describe annual and seasonal variations in the diet of brown bears Ursus arctos in southcentral Sweden, based on analysis of 527 fecal samples from 1994–1996 and 2000–2001. There was distinct seasonal variation in most of the 26 food items we documented. Ungulates, predominantly moose Alces alces, and insects comprised most of the estimated dietary energy content in spring and summer. Insects were represented almost entirely by ants, of which Formica spp. and Camponotus herculeanus were the most common. During autumn, berries dominated the diet. The most important berry species were bilberry Vaccinium myrtillus, crowberry Empetrum hermaphoditum and lingonberry V. vitis‐idaea. We determined berry availability by inventorying 308 random plots three times for two consecutive years. These three berries occurred with great spatial, seasonal and annual variation in abundance. The bears showed the strongest positive preference for bilberries, a lesser positive preference for crowberries, but no preference for lingonberries. The proportion of berries in the autmn diet was stable between years, but the relative importance of the species changed, indicating that bears switched to crowberries when bilberries were less abundant. The effects of predicted future climatic change might have severe effects on the availability of the berries, which is the only important food available for fat acquisition prior to hibernation.
1. Spatiotemporal segregation is often explained by the risk for offspring predation or by differences in physiology, predation risk vulnerability or competitive abilities related to size dimorphism.2. Most large carnivores are size dimorphic and offspring predation is often intraspecific and related to nonparental infanticide (NPI). NPI can be a foraging strategy, a strategy to reduce competition, or a male reproductive strategy. Spatiotemporal segregation is widespread among large carnivores, but its nature remains poorly understood.3. We evaluated three hypotheses to explain spatiotemporal segregation in the brown bear, a size-dimorphic large carnivore in which NPI is common; the ‘NPI – foraging/competition hypothesis', i.e. NPI as a foraging strategy or a strategy to reduce competition, the ‘NPI – sexual selection hypothesis’, i.e. infanticide as a male reproductive strategy and the ‘body size hypothesis’, i.e. body-size-related differences in physiology, predation risk vulnerability or competitive ability causes spatiotemporal segregation. To test these hypotheses, we quantified spatiotemporal segregation among adult males, lone adult females and females with cubs-of-the-year, based on GPS-relocation data (2006–2010) and resource selection functions in a Scandinavian population.4. We found that spatiotemporal segregation was strongest between females with cubs-of-the-year and adult males during the mating season. During the mating season, females with cubs-of-the-year selected their resources, in contrast to adult males, in less rugged landscapes in relative close proximity to certain human-related variables, and in more open habitat types. After the mating season, females with cubs-of-the-year markedly shifted their resource selection towards a pattern more similar to that of their conspecifics. No strong spatiotemporal segregation was apparent between females with cubs-of-the-year and conspecifics during the mating and the postmating season.5. The ‘NPI – sexual selection hypothesis’ best explained spatiotemporal segregation in our study system. We suggest that females with cubs-of-the-year alter their resource selection to avoid infanticidal males. In species exhibiting NPI as a male reproductive strategy, female avoidance of infanticidal males is probably more common than observed or reported, and may come with a fitness cost if females trade safety for optimal resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.