In a recent breakthrough, Teyssier (Ann Probab 48(5):2323–2343, 2020) introduced a new method for approximating the distance from equilibrium of a random walk on a group. He used it to study the limit profile for the random transpositions card shuffle. His techniques were restricted to conjugacy-invariant random walks on groups; we derive similar approximation lemmas for random walks on homogeneous spaces and for general reversible Markov chains. We illustrate applications of these lemmas to some famous problems: the k-cycle shuffle, sharpening results of Hough (Probab Theory Relat Fields 165(1–2):447–482, 2016) and Berestycki, Schramm and Zeitouni (Ann Probab 39(5):1815–1843, 2011), the Ehrenfest urn diffusion with many urns, sharpening results of Ceccherini-Silberstein, Scarabotti and Tolli (J Math Sci 141(2):1182–1229, 2007), a Gibbs sampler, which is a fundamental tool in statistical physics, with Binomial prior and hypergeometric posterior, sharpening results of Diaconis, Khare and Saloff-Coste (Stat Sci 23(2):151–178, 2008).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.