Plant communities are often dispersal-limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter -which differentially affects individuals according to their characteristics and shapes species assemblages -and that the filter varies according to the dispersal mechanism (endozoochory, fur-epizoochory and hoof-epizoochory). We conducted two-step individual participant data meta-analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non-dispersed plants. We found that ungulates dispersed at least 44% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof-epizoochory was more likely for light diaspores without hooked appendages. Furepizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate-dispersed and non-dispersed plant species mostly below 25%), whereas hoof-epizoochory had a stronger effect (eight characteristics included five ones with above 75% variation), and fur-epizoochory an even stronger one (nine characteristics included six ones with above 75% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales.Plant communities are often dispersal-limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. Our analysis is the first synthesis of ungulate seed dispersal that compares characteristics from both non-dispersed and dispersed diaspores, distinguishing the three zoochory mechanisms ungulates are involved in: endozoochory, hoof-epizoochory and fur-epizoochory. We confirmed that seed dispersal by ungulates is an ecological filter whose intensity increases from endozoochory, then hoof-epizoochory to finally fur-epizoochory. By filtering seed traits through dispersal, ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales. Synthesis
ABSTRACT1. Even though beach nourishment is generally considered as an environment-friendly option for coastal protection and beach restoration, sizeable impacts on several beach ecosystem components (microphytobenthos, vascular plants, terrestrial arthropods, marine zoobenthos and avifauna) are described in the literature, as reviewed in this paper.2. Negative, ecosystem-component specific effects of beach nourishment dominate in the short to medium term, with the size of the impact being determined by (1) activities during the construction phase, (2) the quality and (3) the quantity of the nourishment sand, (4) the timing, place and size of project, and (5) the nourishment technique and strategy applied. Over the long term the speed and degree of ecological recovery largely depend on the physical characteristics of the beach habitat, mainly determined by (1) sediment quality and quantity, (2) the nourishment technique and strategy applied, (3) the place and the size of nourishment and (4) the physical environment prior to nourishment.3. The limited information available on indirect and cumulative ecological effects indicates that these effects cannot be neglected in an overall impact assessment. Hence, for ecologically good practice of beach nourishment it is advised (1) to choose nourishment sands with a sediment composition comparable to that of the natural sediment, (2) to avoid short-term compaction by ploughing immediately after construction, (3) to execute the nourishment in a period of low beach use by birds and other mobile organisms, (4) to choose a number of smaller projects rather than a single large nourishment project and (5) to select the nourishment technique with respect to the local natural values. *Correspondence to: J. Speybroeck, Ghent University, Biology Department, Marine Biology Section, Krijgslaan 281, Building S8, B-9000 Ghent, Belgium. E-mail: jeroen.speybroeck@UGent.be 4. In order to allow an objective, scientifically sound, ecological adjustment of future nourishments, research should aim at (1) taking into account the full sandy beach ecosystem, (2) avoiding strategic imperfections in experimental design and (3) elucidating the biological processes behind impact and recovery of all ecosystem components.
Grey dunes are a priority habitat type of the Euro-pean Union Habitats Directive and demand special attention for conservation and management. Knowledge of the ecology of coastal grey dunes can contribute to this policy. Dune grassland succession is initiated by fixation and driven by the complex of soil formation (humus accumulation) and vegetation development. Leaching and mobilization of CaCO 3 , which are important in nutrient dynamics, complicate the picture. At present, grass-and scrub encroachment greatly overrules these fine scaled soil processes and causes substantial loss of regional biodiversity. Belgium has an international responsibility in grey dune conservation because of the limited range of its characteristic vegetation, flora and fauna. As biomass removal seems essential in grassland preservation, grazing is an important management tool. Evaluation of management measures focuses on biodiversity measurements on the levels of landscape, community and species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.