We present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6–4.4 M ⊙. This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70–1.92 kpc) and has a slow transverse motion of <30 km s−1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are <2M ⊙, and they are unlikely to be black holes; two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (∼108) and find reasonable agreement given the small sample size.
This supplement provides supporting material for Lam et al. We briefly summarize past gravitational microlensing searches for black holes (BHs) and present details of the observations, analysis, and modeling of five BH candidates observed with both ground-based photometric microlensing surveys and Hubble Space Telescope astrometry and photometry. We present detailed results for four of the five candidates that show no or low probability for the lens to be a BH. In these cases, the lens masses are <2 M ⊙, and two of the four are likely white dwarfs or neutron stars. We also present detailed methods for comparing the full sample of five candidates to theoretical expectations of the number of BHs in the Milky Way (∼108).
Uncertainty in the initial–final mass relation (IFMR) has long been a problem in understanding the final stages of massive star evolution. One of the major challenges of constraining the IFMR is the difficulty of measuring the mass of nonluminous remnant objects (i.e., neutron stars and black holes). Gravitational-wave detectors have opened the possibility of finding large numbers of compact objects in other galaxies, but all in merging binary systems. Gravitational lensing experiments using astrometry and photometry are capable of finding compact objects, both isolated and in binaries, in the Milky Way. In this work we improve the Population Synthesis for Compact object Lensing Events (PopSyCLE) microlensing simulation code in order to explore the possibility of constraining the IFMR using the Milky Way microlensing population. We predict that the Roman Space Telescope’s microlensing survey will likely be able to distinguish different IFMRs based on the differences at the long end of the Einstein crossing time distribution and the small end of the microlensing parallax distribution, assuming the small (π E ≲ 0.02) microlensing parallaxes characteristic of black hole lenses are able to be measured accurately. We emphasize that future microlensing surveys need to be capable of characterizing events with small microlensing parallaxes in order to place the most meaningful constraints on the IFMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.