Abstract-Nowadays, complex systems are distributed over several levels of Information and Communications Technology (ICT) infrastructures. They may involve very small devices such as sensors and RFID, but also powerful systems such as Cloud computers and knowledge bases, as well as intermediate devices such as smartphones and personal computers. These systems are sometimes referred to as multiscale systems. The word "multiscale" may qualify various distributed systems according to different viewpoints such as their geographic dispersion, the networks they are deployed on, or their users' organizations. For one entity of the multiscale system, communication technologies, non-functional properties (for persistence or security purpose) or architectures to be favored may vary from one scale to another. Moreover, ad hoc architecture of such complex systems are costly and non-sustainable. In this paper, we propose a scaleawareness framework, called MuSCa. This framework includes a characterization process based on the concepts of viewpoints, dimensions and scales. These concepts constitute the core of a dedicated metamodel. The proposed framework allows multiscale software designers to share a taxonomy for qualifying their own system. At system design time, the result of such a qualification is a model from which the framework produces scale-awareness artifacts. As an illustration of this model-driven approach, we show how multiscale probes are generated to provide multiscale components with an embedded scale-awareness ability.
With the Internet of Things (IoT) paradigm, ambient systems move from locally distributed systems to Internet distributed systems. These systems become huge in term of number of devices and imply high heterogeneity (e.g., of devices, of networks). They are continuously evolving with appearing and disappearing devices at runtime. The inner complexity of these systems, called multiscale systems, requires autonomic deployment middleware. Such middleware should deploy components where and when necessary, and adapt the architecture of the deployed systems considering the different scales of the systems. In this paper, we define MuScADeL, a domainspecific language (DSL) dedicated to multiscale and autonomic software deployment. MuScADeL allows designers to abstractly define deployment properties without exact knowledge of the devices and networks the system will be deployed on. This DSL is based on a scale-awareness framework, which helps designers to characterize the multiscale nature of a system from several viewpoints such as device, network, administration and geography. With MuScADeL, deployment designers may express multiscale properties of systems to deploy. MuScADeL is a building block for deployment middleware that targets multiscale distributed systems. We illustrate the possibilities of MuScADeL through a smart transport scenario.
The tremendous amount of context information that can be generated by the Internet of Things (IoT) calls for new solutions able to dig for the relevant information fitting applications' needs. This paper proposes to leverage multiscale-, Quality of Context (QoC)-and privacy-awareness for the efficient filtering of context information disseminated between the decoupled producers and consumers of the IoT. We first discuss some specific challenges that must be addressed by next generation context managers, including multiscalability, distributed push and pull communications, and the consideration of both QoC and privacy constraints. We then answer these challenges with a new context dissemination framework involving visibility and forwarding filters and illustrate it through the implementation of a collaborative social welfare scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.