The most effective regimens were artemether-lumefantrine against P. falciparum and dihydroartemisinin-piperaquine against P. vivax. The relatively high rate of treatment failure with dihydroartemisinin-piperaquine against P. falciparum may reflect cross-resistance between chloroquine and piperaquine. (Australian New Zealand Clinical Trials Registry number, ACTRN12605000550606.)
BackgroundThe fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations.Methods and findingsA search in PubMed, Embase, ClinicalTrials.gov, Google Scholar, conference proceedings, and the WorldWide Antimalarial Resistance Network (WWARN) pharmacology database identified 31 relevant clinical studies published between 1 January 1990 and 31 December 2012, with 4,546 patients in whom lumefantrine concentrations were measured. Under the auspices of WWARN, relevant individual concentration-time data, clinical covariates, and outcome data from 4,122 patients were made available and pooled for the meta-analysis. The developed lumefantrine population pharmacokinetic model was used for dose optimisation through in silico simulations. Venous plasma lumefantrine concentrations 7 days after starting standard AL treatment were 24.2% and 13.4% lower in children weighing <15 kg and 15–25 kg, respectively, and 20.2% lower in pregnant women compared with non-pregnant adults. Lumefantrine exposure decreased with increasing pre-treatment parasitaemia, and the dose limitation on absorption of lumefantrine was substantial. Simulations using the lumefantrine pharmacokinetic model suggest that, in young children and pregnant women beyond the first trimester, lengthening the dose regimen (twice daily for 5 days) and, to a lesser extent, intensifying the frequency of dosing (3 times daily for 3 days) would be more efficacious than using higher individual doses in the current standard treatment regimen (twice daily for 3 days). The model was developed using venous plasma data from patients receiving intact tablets with fat, and evaluations of alternative dosing regimens were consequently only representative for venous plasma after administration of intact tablets with fat. The absence of artemether-dihydroartemisinin data limited the prediction of parasite killing rates and recrudescent infections. Thus, the suggested optimised dosing schedule was based on the pharmacokinetic endpoint of lumefantrine plasma exposure at day 7.ConclusionsOur findings suggest that revised AL dosing regimens for young children and pregnant women would improve drug exposure but would require longer or more complex schedules. These dosing regimens should be evaluated in prospective clinical studies to determine whether they would improve cure rates, demonstrate adequate safety, and thereby prolong the useful therapeutic life of this valuable antimalarial treatment.
In order to determine the pharmacokinetic disposition of chloroquine (CQ) and its active metabolite, desethylchloroquine (DECQ), when administered as intermittent presumptive treatment in pregnancy (IPTp) for malaria, 30 Papua New Guinean women in the second or third trimester of pregnancy and 30 age-matched nonpregnant women were administered three daily doses of 450 mg CQ (8.5 mg/kg of body weight/day) in addition to a single dose of sulfadoxine-pyrimethamine. For all women, blood was taken at baseline; at 1, 2, 4, 6, 12, 18, 24, 30, 48, and 72 h posttreatment; and at 7, 10, 14, 28, and 42 days posttreatment. Plasma was subsequently assayed for CQ and DECQ by high-performance liquid chromatography, and population pharmacokinetic modeling was performed. Pregnant subjects had significantly lower area under the plasma concentration-time curve for both CQ (35,750 versus 47,892 g ⅐ h/liter, P < 0.001) and DECQ (23,073 versus 41,584 g ⅐ h/liter, P < 0.001), reflecting significant differences in elimination half-lives and in volumes of distribution and clearances relative to bioavailability. Reduced plasma concentrations of both CQ and DECQ could compromise both curative efficacy and posttreatment prophylactic properties in pregnant patients. Higher IPTp CQ doses may be desirable but could increase the risk of adverse hemodynamic effects.There are few affordable antimalarial drugs that can be used safely in pregnancy. The efficacy of one of these, chloroquine (CQ), has been compromised by the widespread development of Plasmodium falciparum resistance. However, due to a lack of suitable alternatives, CQ is still widely used in pregnant women, either alone or in combination with other drugs such as sulfadoxine-pyrimethamine (SP), while it remains the drug of choice for Plasmodium vivax in most countries (13,21,34). Although the physiologic changes of pregnancy can alter drug disposition through increased plasma volume, increased clearance, and altered protein binding (15), there have been only three relatively small published studies of CQ pharmacokinetics, from which only limited conclusions can be drawn (9,21,23).Detailed antimalarial pharmacokinetic studies of pregnant women have been identified as an urgent priority, both for optimization of acute treatment and development of new intervention strategies such as intermittent preventive treatment in pregnancy (IPTp) (29). We have, therefore, assessed CQ disposition in pregnant Papua New Guinean (PNG) women and a matched group of nonpregnant female controls. In order to maximize the clinical relevance of our data, we utilized a long (42-day) sampling period (32), measured simultaneous plasma concentrations of the active metabolite of CQ, desethylchloroquine (DECQ) (6), and incorporated both CQ and DECQ in the development of pharmacokinetic models. MATERIALS AND METHODSStudy site and sample. The present study was conducted at Alexishafen Health Centre, Madang Province, between February and July 2006. Eligibility criteria and the characteristics of the 30 pregnant and 3...
There are sparse published data relating to the pharmacokinetic properties of artemether, lumefantrine, and their active metabolites in children, especially desbutyl-lumefantrine. We studied 13 Papua New Guinean children aged 5 to 10 years with uncomplicated malaria who received the six recommended doses of artemether (1.7 mg/kg of body weight) plus lumefantrine (10 mg/kg), given with fat over 3 days. Intensive blood sampling was carried out over 42 days. Plasma artemether, dihydroartemisinin, lumefantrine, and desbutyl-lumefantrine were assayed using liquid chromatography-mass spectrometry or high-performance liquid chromatography. Multicompartmental pharmacokinetic models for a drug plus its metabolite were developed using a population approach that included plasma artemether and dihydroartemisinin concentrations below the limit of quantitation. Although artemether bioavailability was variable and its clearance increased by 67.8% with each dose, the median areas under the plasma concentration-time curve from 0 h to infinity (AUC 0-ؕ s) for artemether and dihydroartemisinin (3,063 and 2,839 g ⅐ h/liter, respectively) were similar to those reported previously in adults with malaria. For lumefantrine, the median AUC 0-ؕ (459,980 g ⅐ h/liter) was also similar to that in adults with malaria. These data support the higher dose recommended for children weighing 15 to 35 kg (35% higher than that for a 50-kg adult) but question the recommendation for a lower dose in children weighing 12.5 to 15 kg. The median desbutyl-lumefantrine/lumefantrine ratio in the children in our study was 1.13%, within the range reported for adults and higher at later time points because of the longer desbutyllumefantrine terminal elimination half-life. A combined desbutyl-lumefantrine and lumefantrine AUC 0-ؕ weighted on in vitro antimalarial activity was inversely associated with recurrent parasitemia, suggesting that both the parent drug and the metabolite contribute to the treatment outcome of artemether-lumefantrine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.